4.已知等差數(shù)列{an}的前n項和為Sn,若a1+a4+a7=6,則S7=( 。
A.10B.12C.14D.16

分析 a1+a4+a7=6,可得3a4=6,解得a4.利用S7=$\frac{7({a}_{1}+{a}_{7})}{2}$=7a4即可得出.

解答 解:∵a1+a4+a7=6,∴3a4=6,解得a4=2.
則S7=$\frac{7({a}_{1}+{a}_{7})}{2}$=7a4=14.
故選:C.

點評 本題考查了等差數(shù)列的通項公式與求和公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.設函數(shù)f(x)=4cos(ωx+φ)對任意的x∈R,都有$f(-x)=f(\frac{π}{3}+x)$,若函數(shù)g(x)=sin(ωx+φ)-2,則$g(\frac{π}{6})$的值是( 。
A.1B.-5或3C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{99×100}$=(  )
A.-$\frac{99}{100}$B.$\frac{99}{100}$C.-$\frac{100}{99}$D.$\frac{100}{99}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.發(fā)改委10月19日印發(fā)了《中國足球中長期發(fā)展規(guī)劃(2016-2050年)重點任務分工》通知,其中“十三五”校園足球普及行動排名第三,為了調(diào)查重慶八中高一高二兩個年級對改政策的落實情況,在每個年級隨機選取20名足球愛好者,記錄改政策發(fā)布后他們周平均增加的足球運動時間(單位:h),所得數(shù)據(jù)如下:
高一年級的20位足球愛好者平均增加的足球運動時間:
1.6  3.4  3.7  3.3  3.8  3.2  2.8  4.2  2.5  4.5
3.5  2.5  3.3  3.7  4.0  3.9  4.1  3.6  2.2  2.2
高二年級的20位足球愛好者平均增加的足球運動時間:
4.2  2.8  2.9  3.1  3.6  3.4  2.2  1.8  2.3  2.7
2.6  2.4  1.5  3.5  2.1  1.9  2.2  3.7  1.5  1.6
(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結果看,哪個年級政策落實得更好?
(2)根據(jù)兩組數(shù)據(jù)完成圖4的莖葉圖,從莖葉圖簡單分析哪個年級政策落實得更好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設向量$\overrightarrow{OM}$、$\overrightarrow{ON}$是夾角為60°的兩個單位向量,向量$\overrightarrow{OP}$=x•$\overrightarrow{OM}$+y•$\overrightarrow{ON}$,(x、y為實數(shù)).若△PMN是以點M為直角頂點的直角三角形,則x-y的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.命題“?x∈R,f(x)>0”的否定為( 。
A.?x0∈R,f(x0)>0B.?x∈R,f(x)<0C.?x0∈R,f(x0)≤0D.?x∈R,f(x)≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=-x3+ax2-4.
(1)若f(x)在$x=\frac{4}{3}$處取得極值,求實數(shù)a的值;
(2)在(1)的條件下,若關于x的方程f(x)=m在[-1,1]上恰有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.“4x+p<0”是“x2-x-2>0”的充分不必要條件,則實數(shù)p的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.過兩點A(4,y),B(2,-3)的直線的傾斜角為45°,則y=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-1D.1

查看答案和解析>>

同步練習冊答案