【題目】人類的四種血型與基因類型的對應為:O型的基因類型為ii,A型的基因類型為ai或aa,B型的基因類型為bi或bb,AB型的基因類型為ab,其中a和b是顯性基因,i是隱性基因.一對夫妻的血型一個是A型,一個是B型,請確定他們的子女的血型是0,A,B或AB型的概率,并填寫下表:
父母血型的基因類型組合 | 子女血型的概率 | |||
O | A | B | AB | |
ai×bi | ||||
ai×bb | 0 | 0 | ||
aa×bi | 0 | 0 | ||
aa×bb | 0 | 0 | 0 | 1 |
科目:高中數(shù)學 來源: 題型:
【題目】給出以下四個命題:
(1)命題,使得,則,都有;
(2)已知函數(shù)f(x)=|log2x|,若a≠b,且f(a)=f(b),則ab=1;
(3)若平面α內(nèi)存在不共線的三點到平面β的距離相等,則平面α平行于平面β;
(4)已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關于點對稱.
其中真命題的序號為______________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其導函數(shù)為
當時,若函數(shù)在R上有且只有一個零點,求實數(shù)a的取值范圍;
設,點是曲線上的一個定點,是否存在實數(shù)使得成立?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:①當為任意實數(shù)時,直線恒過定點P,則過點P且焦點在軸上的拋物線的標準方程是;②已知雙曲線的右焦點為,一條漸近線方程為 ,則雙曲線的標準方程是;③拋物線的準線方程為;④已知雙曲線 ,其離心率,則的取值范圍是.
其中正確命題的序號是___________.(把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C以坐標軸為對稱軸,以坐標原點為對稱中心,橢圓的一個焦點為,點在橢圓上,
Ⅰ求橢圓C的方程.
Ⅱ斜率為k的直線l過點F且不與坐標軸垂直,直線l交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知O是△ABC內(nèi)一點,∠AOB=150°,∠BOC=90°,設=,=,=,且||=2,||=1,||=3,試用和表示.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標方程;
(2)設圓與直線交于點,若點的坐標為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別是a,b,c,向量=(cos B,cos C),=(2a+c,b),且⊥.
(1)求角B的大小;
(2)若b=,求a+c的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)求證:函數(shù)是增函數(shù);
(2)若函數(shù)在上的值域是(),求實數(shù)的取值范圍;
(3)若存在,使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com