(本題滿(mǎn)分14分)

   學(xué)校為了了解高一新生男生的體能狀況,從高一新生中抽取若干名男生進(jìn)行鉛球測(cè)試,把所得數(shù)據(jù)(精確到0.1米)進(jìn)行整理后,分成6組畫(huà)出頻率分布直方圖的一部分(如下圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30. 第6小組的頻數(shù)是7. (1)請(qǐng)將頻率分布直方圖補(bǔ)充完整;

(2)該校參加這次鉛球測(cè)試的男生有多少人?

(3)若成績(jī)?cè)?.0米以上(含8.0米)的為合格,試求這次鉛球測(cè)試的成績(jī)的合格率;

(4)在這次測(cè)試中,你能確定該校參加測(cè)試的男生鉛球成績(jī)的眾數(shù)和中位數(shù)各落在哪個(gè)小組內(nèi)嗎?

 

 

 

 

 


 

 

 

 

 

解析:(1)因?yàn)楦餍〗M頻率之和為1,所以第6小組的

頻率為1 (0.04+0.10+0.14+0.28+0.30)=0.14; …3分

   (2)由(1)知:,所以x=50,……8分

   (3)由圖可知:第4、5、6小組成績(jī)?cè)?.0米以上,

其頻率之和為:0.28+0.30+0.14=0.72,                           …………11分

   (4)能確定中位數(shù)落在第4小組,而眾數(shù)落在第5小組。          …………14分


 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實(shí)數(shù)x,y,z 滿(mǎn)足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點(diǎn),且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿(mǎn)足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值

(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分14分)

已知點(diǎn)是⊙上的任意一點(diǎn),過(guò)垂直軸于,動(dòng)點(diǎn)滿(mǎn)足。

(1)求動(dòng)點(diǎn)的軌跡方程; 

(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn),使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間,使

;如果沒(méi)有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案