(本小題滿分15分)

已知圓,為拋物線上的動(dòng)點(diǎn).

(Ⅰ) 若,求過(guò)點(diǎn)的圓的切線方程;

 (Ⅱ) 若,求過(guò)點(diǎn)的圓的兩切線與軸圍成的三角形面積的最小值.

 

【答案】

(Ⅰ)切線方程為

(Ⅱ)兩切線與軸圍成的三角形面積的最小值為32.

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,求解切線方程以及三角形面積的求解的綜合運(yùn)用。

(1)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012082415232521936662/SYS201208241524094655378140_DA.files/image005.png">.當(dāng)點(diǎn)時(shí),設(shè)切線方程為,即,利用導(dǎo)數(shù)的幾何意義得到k的值,得到結(jié)論。

 

(2)設(shè)切線,即

切線與軸交點(diǎn)為,圓心到切線的距離為

表示得到三角形的面積的公式,然后結(jié)合函數(shù)求解得到最值。

解:(Ⅰ)

當(dāng)點(diǎn)時(shí),設(shè)切線方程為,即

圓心到切線的距離為,即

所以,得

所以切線方程為.………………………………………………6分

(Ⅱ)設(shè)切線,即,

切線與軸交點(diǎn)為,圓心到切線的距離為

,

化簡(jiǎn)得

設(shè)兩切線斜率分別為,則,

  ,當(dāng)且僅當(dāng)時(shí)取等號(hào).

所以兩切線與軸圍成的三角形面積的最小值為32.………………………………15分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(ⅰ)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;

(ⅱ)若是兩個(gè)不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知、分別為橢圓

上、下焦點(diǎn),其中也是拋物線的焦點(diǎn),

點(diǎn)在第二象限的交點(diǎn),且

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn)P(1,3)和圓,過(guò)點(diǎn)P的動(dòng)直線與圓相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:,)。求證:點(diǎn)Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線與橢圓相交于A、B兩點(diǎn)。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052202033078124869/SYS201205220205036875888611_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說(shuō)明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案