若函數(shù)f(x)=ax-lnx在(
1
2
,+∞)
內(nèi)單調(diào)遞增,則a的取值范圍為( 。
A、[2,+∞)
B、(-∞,2]
C、(-∞,0]
D、(-∞,0]∪[2,+∞)
分析:求導(dǎo)數(shù)f′(x),由函數(shù)f(x)在區(qū)間[1+∞)內(nèi)單調(diào)遞增,得f′(x)≥0在[1,+∞)上恒成立,分離參數(shù)后轉(zhuǎn)化為求函數(shù)最值即可.
解答:解:f′(x)=(ax-lnx)′=a-
1
x
(x>0),
(1)由已知,得f′(x)≥0在[
1
2
,+∞)上恒成立,
即a≥
1
x
在[
1
2
,+∞)上恒成立,
又∵當x∈[
1
2
,+∞)時,
1
x
≤2,
∴a≥2,
即a的取值范圍為[2,+∞).
故選:A.
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、在閉區(qū)間上的最值及函數(shù)恒成立問題,考查分類討論思想,函數(shù)恒成立問題往往轉(zhuǎn)化為函數(shù)最值解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

①命題“對任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函數(shù)f(x)=2x-x2的零點有2個;
③若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實數(shù)a=0;
④函數(shù)y=sinx(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
x
-x
sinxdx;
⑤若函數(shù)f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為(1,8).
其中真命題的序號是
①③
①③
(寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),其定義域為D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數(shù).
(1)設(shè)f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數(shù),并說明原因;
(2)若函數(shù)f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數(shù),試求出實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)記為y=g(x),g(16)=2,則f(
12
)
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax-2+2010(a>0且a≠1)恒過一定點,此定點坐標為
(2,2011)
(2,2011)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)若函數(shù)f(x)=ax+b的零點為x=2,則函數(shù)g(x)=bx2-ax的零點是x=0和x=
-
1
2
-
1
2

查看答案和解析>>

同步練習(xí)冊答案