平面內(nèi)給定兩個(gè)向量
a
=(3,1),
b
=(-1,2)

(1)求|3
a
+2
b
|

(2)若(
a
+k
b
)∥(2
a
-
b
)
,求實(shí)數(shù)k的值.
分析:(1)利用向量的運(yùn)算法則和模的計(jì)算公式即可得出.
(2)利用向量共線定理即可得出.
解答:解:(1)由條件知:3
a
+2
b
=(7,7)
,
|3
a
+2
b
|=
72+72
=7
2

(2)
a
+k
b
=(3,1)+k(-1,2)=(3-k,1+2k)
,2
a
-
b
=(7,0)

(
a
+k
b
)∥(2
a
-
b
)
,
∴(3-k)•0-7(1+2k)=0,
解得k=-
1
2
點(diǎn)評(píng):熟練掌握向量的運(yùn)算法則和模的計(jì)算公式、向量共線定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣東)設(shè)
a
是已知的平面向量且
a
0
,關(guān)于向量
a
的分解,有如下四個(gè)命題:
①給定向量
b
,總存在向量
c
,使
a
=
b
+
c

②給定向量
b
c
,總存在實(shí)數(shù)λ和μ,使
a
b
c
;
③給定單位向量
b
和正數(shù)μ,總存在單位向量
c
和實(shí)數(shù)λ,使
a
b
c
;
④給定正數(shù)λ和μ,總存在單位向量
b
和單位向量
c
,使
a
b
c

上述命題中的向量
b
,
c
a
在同一平面內(nèi)且兩兩不共線,則真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)是已知的平面向量且,關(guān)于向量的分解,有如下四個(gè)命題:

①給定向量,總存在向量,使;

②給定向量,總存在實(shí)數(shù),使;

③給定單位向量和正數(shù),總存在單位向量和實(shí)數(shù),使;

④給定正數(shù),總存在單位向量和單位向量,使;

上述命題中的向量在同一平面內(nèi)且兩兩不共線,則真命題的個(gè)數(shù)是

A.1                 B.2                  C.3              D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建莆田一中高三上學(xué)期第一學(xué)段考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)是已知的平面向量且,關(guān)于向量的分解,有如下四個(gè)命題:

①給定向量,總存在向量,使

②給定向量,總存在實(shí)數(shù),使;

③給定單位向量和正數(shù),總存在單位向量和實(shí)數(shù),使

④給定正數(shù),總存在單位向量和單位向量,使;

上述命題中的向量,在同一平面內(nèi)且兩兩不共線,則真命題的個(gè)數(shù)是(  )

A.1         B.2          C.3          D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(廣東卷解析版) 題型:選擇題

設(shè)是已知的平面向量且,關(guān)于向量的分解,有如下四個(gè)命題:

①給定向量,總存在向量,使

②給定向量,總存在實(shí)數(shù),使;

③給定單位向量和正數(shù),總存在單位向量和實(shí)數(shù),使;

④給定正數(shù),總存在單位向量和單位向量,使;

上述命題中的向量在同一平面內(nèi)且兩兩不共線,則真命題的個(gè)數(shù)是(      )

A.1                B.2                C.3                D.4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案