【題目】當(dāng)今時(shí)代,手機(jī)的功能越來(lái)越豐富,這給我們的生活帶來(lái)了很多的便利,然而過(guò)度玩手機(jī)已成為一個(gè)嚴(yán)重的社會(huì)問(wèn)題,特別是在校學(xué)生過(guò)度玩手機(jī),已嚴(yán)重影響了其身心發(fā)展和學(xué)業(yè)的進(jìn)步.某校為了解學(xué)生使用手機(jī)的情況,從全校學(xué)生中隨機(jī)抽取了100名學(xué)生,對(duì)他們每天使用手機(jī)的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如下的統(tǒng)計(jì)表:
(1)以樣本估計(jì)總體,若在該校中任取一名學(xué)生,求該生使用手機(jī)時(shí)間不低于1小時(shí)的概率;
(2)對(duì)樣本中使用手機(jī)時(shí)間不低于1.5小時(shí)的學(xué)生,采用分層抽樣的方法抽取6人,再在這6人中隨機(jī)抽.取2人,求抽取的2人使用手機(jī)時(shí)間均低于2小時(shí)的概率;
(3)經(jīng)過(guò)進(jìn)一步統(tǒng)計(jì)分析發(fā)現(xiàn),使用手機(jī)時(shí)間低于1小時(shí)的學(xué)生中,有25人綜合素質(zhì)考核為“優(yōu)”,使用手機(jī)時(shí)間不低于1小時(shí)的學(xué)生中,有20人綜合素質(zhì)考核為“優(yōu)”,問(wèn):是否能在犯錯(cuò)誤的概率不超過(guò)0.1的前提下,認(rèn)為綜合素質(zhì)考核為“優(yōu)”與使用手機(jī)的時(shí)間有關(guān)?
附:.
【答案】(1)0.55;(2);(3)能.
【解析】
(1)樣本中使用手機(jī)時(shí)間不低于1小時(shí)的頻率為
(2)由統(tǒng)計(jì)表知,使用手機(jī)時(shí)間不低于1.5小時(shí)的學(xué)生共30人,采取分層抽樣的方法抽取6人,則在時(shí)間區(qū)間內(nèi)的有3人,在時(shí)間區(qū)間內(nèi)的有2人,在時(shí)間區(qū)間的有1人,然后列出所有的基本事件和滿足所求事件的基本事件即可
(3)列出列聯(lián)表,然后算出即可
(1)樣本中使用手機(jī)時(shí)間不低于1小時(shí)的頻率為,
則在該校學(xué)生中任取一人,其使用手機(jī)時(shí)間不低于1小時(shí)的概率是0.55.
(2)由統(tǒng)計(jì)表知,使用手機(jī)時(shí)間不低于1.5小時(shí)的學(xué)生共30人,
采取分層抽樣的方法抽取6人,則在時(shí)間區(qū)間內(nèi)的有3人,記作1,2,3,
在時(shí)間區(qū)間內(nèi)的有2人,記作4,5,在時(shí)間區(qū)間的有1人,記作6
從這6人中抽取2人,基本事件有
,共15個(gè),
其中玩手機(jī)的時(shí)間均低于2小時(shí)的基本事件有,共3個(gè),
故所求概率為.
(3)統(tǒng)計(jì)結(jié)果的列聯(lián)表為:
使用手機(jī)時(shí)間低于1小時(shí) | 使用手機(jī)時(shí)間不低于1小時(shí) | 合計(jì) | |
優(yōu) | 25 | 20 | 45 |
非優(yōu) | 20 | 35 | 55 |
合計(jì) | 45 | 55 | 100 |
則.
故能在犯錯(cuò)誤的概率不超過(guò)0.1的前提下,認(rèn)為綜合素質(zhì)考核為“優(yōu)”與使用手機(jī)的時(shí)間有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形中,,平面平面,三角形為等邊三角形,.
(Ⅰ)求證:平面平面;
(Ⅱ)若平面
①求異面直線與所成角的余弦值;
②求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的實(shí)常數(shù),函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),
(。┣髮(shí)數(shù)的取值范圍;
(ⅱ)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線:(,為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線:.
(1)說(shuō)明是哪一種曲線,并將的方程化為極坐標(biāo)方程;
(2)若直線的方程為,設(shè)與的交點(diǎn)為,,與的交點(diǎn)為,,若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,角所對(duì)的邊分別是,,且.
(1)求角;
(2),為所在平面內(nèi)一點(diǎn),且滿足,求的最小值,并求取得最小值時(shí)的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程 =k在(0,+∞)上有兩個(gè)不同的解α,β(α<β),則下列的四個(gè)命題正確的是( )
A. sin 2α=2αcos2α B. cos 2α=2αsin2α
C. sin 2β=-2βsin2β D. cos 2β=-2βsin2β
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)構(gòu)為了了解不同年齡的人對(duì)一款智能家電的評(píng)價(jià),隨機(jī)選取了50名購(gòu)買該家電的消費(fèi)者,讓他們根據(jù)實(shí)際使用體驗(yàn)進(jìn)行評(píng)分.
(Ⅰ)設(shè)消費(fèi)者的年齡為,對(duì)該款智能家電的評(píng)分為.若根據(jù)統(tǒng)計(jì)數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評(píng)分的方差為.求與的相關(guān)系數(shù),并據(jù)此判斷對(duì)該款智能家電的評(píng)分與年齡的相關(guān)性強(qiáng)弱.
(Ⅱ)按照一定的標(biāo)準(zhǔn),將50名消費(fèi)者的年齡劃分為“青年”和“中老年”,評(píng)分劃分為“好評(píng)”和“差評(píng)”,整理得到如下數(shù)據(jù),請(qǐng)判斷是否有的把握認(rèn)為對(duì)該智能家電的評(píng)價(jià)與年齡有關(guān).
好評(píng) | 差評(píng) | |
青年 | 8 | 16 |
中老年 | 20 | 6 |
附:線性回歸直線的斜率;相關(guān)系數(shù),獨(dú)立性檢驗(yàn)中的,其中.
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“搜索指數(shù)”是網(wǎng)民通過(guò)搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計(jì)指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對(duì)該關(guān)鍵詞的搜索次數(shù)越多,對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個(gè)關(guān)鍵詞的搜索指數(shù)變化的走勢(shì)圖.
根據(jù)該走勢(shì)圖,下列結(jié)論正確的是( )
A. 這半年中,網(wǎng)民對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化
B. 這半年中,網(wǎng)民對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱
C. 從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來(lái)看,去年10月份的方差小于11月份的方差
D. 從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來(lái)看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知四棱錐P—ABCD的底面ABCD是平行四邊形,PA⊥面ABCD,M是AD的中點(diǎn),N是PC的中點(diǎn).
(1)求證:MN∥面PAB;
(2)若平面PMC⊥面PAD,求證:CM⊥AD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com