“a=1”是“函數(shù)f(x)=x+acosx在區(qū)間(0,
π2
)上為增函數(shù)”的
 
條件(在“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中,選擇適當(dāng)?shù)囊环N填空).
分析:利用導(dǎo)數(shù)和單調(diào)性之間的關(guān)系,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.
解答:解:∵f(x)=x+acosx,
∴f'(x)=1-asinx,
若a=1時(shí),f'(x)=1-sinx>0,∴此時(shí)函數(shù)f(x)=x+acosx在區(qū)間(0,
π
2
)上為增函數(shù).
當(dāng)a=-1時(shí),f'(x)=1+sinx>0,滿足在區(qū)間(0,
π
2
)上為增函數(shù).
∴“a=1”是“函數(shù)f(x)=x+acosx在區(qū)間(0,
π
2
)上為增函數(shù)”的充分不必要條件.
故答案為:充分不必要.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、“a=1”是“函數(shù)f(x)=|x-a|在區(qū)間[1,+∞)上為增函數(shù)”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=1”是“函數(shù)f(x)=
x2x≤1
2x+a2-2x>1
在x=1處連續(xù)的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=1”是“函數(shù)f(x)=
2x-a2x+a
在其定義域上為奇函數(shù)”的
充分不必要
充分不必要
條件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,錯(cuò)誤命題的序號(hào)有
 

(1)“a=-1”是“函數(shù)f(x)=x2+|x+a+1|( x∈R) 為偶函數(shù)”的必要條件;
(2)“直線l垂直平面α內(nèi)無數(shù)條直線”是“直線l垂直平面α”的充分條件;
(3)已知a,b,c為非零向量,則“a•b=a•c”是“b=c”的充要條件;
(4)若p:?x∈R,x2+2x+2≤0,則¬p:?x∈R,x2+2x+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下判斷正確的是( 。
A、命題“負(fù)數(shù)的平方是正數(shù)”不是全稱命題B、命題“?x∈N,x3>x2”的否定是“?x∈N,x3<x2C、“a=1”是“函數(shù)f(x)=cos2ax-sin2ax的最小正周期是π”的必要不充分條件D、“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案