已知復(fù)平面上點(diǎn)集S={z||z|2-2iz+2a(1+i)=0},a≥0.
(1)當(dāng)S≠∅時(shí),求a的范圍;
(2)當(dāng)S≠∅時(shí),求|z-2|的范圍.
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:設(shè)z=x+yix,y∈R,通過(guò)復(fù)數(shù)相等求出x,y滿足的條件,然后解答.
解答: 解:(1)設(shè)z=x+yi,x,y∈R,由|z|2-2iz+2a(1+i)=0,得x2+y2+2y-2xi+2a+2ai=0,
所以
x2+y2+2y+2a=0
x=a

所以(x+1)2+(y+1)2=2,(a+1)2+(y+1)2=2,
所以0≤a≤
2
-1;
(2)由(1)可得z表示以(-1,-1)為圓心,
2
為半徑的圓,因?yàn)閨z-2|表示圓上的點(diǎn)到(2,0)的距離,并且此點(diǎn)到圓心的距離為
(2+1)2+1
=
10
,所以|z-2|的范圍為(
10
-
2
,
10
+
2
).
點(diǎn)評(píng):本題考查了復(fù)數(shù)相等以及由復(fù)數(shù)模的幾何意義求范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=-2asin(2x+
π
6
)+2a+b,x∈[0,
π
2
]時(shí),-5≤f(x)≤1,求常數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
ex
(其中e為自然對(duì)數(shù)的底數(shù)),若f(x0)是函數(shù)f(x)的極大值,則實(shí)數(shù)x0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a4a6=9,則log3a1+log3a2+…+log3a9
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

loga
2
3
<1(0<a<1),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的程序框圖,若輸入的x值為0,則輸出的y值為( 。
A、
3
2
B、0
C、1
D、
3
2
或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|1≤4x-3•2x+3≤7},
(1)求集合M;
(2)求函數(shù)f(x)=4 x-
1
2
-2x+1+5,x∈M的值域及單增區(qū)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知非零向量
OA
,
OB
不共線,且
BM
=
1
3
BA
,則向量
OM
=( 。
A、
1
3
AO
-
2
3
OB
B、
2
3
AO
+
1
3
OB
C、
1
3
AO
+
2
3
OB
D、
1
3
AO
-
4
3
OB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列1,2
1
2
,3
1
4
,4
1
8
,5
1
16
,6
1
32
,…的前10項(xiàng)之和為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案