科目: 來源:2012-2013學(xué)年四川省成都高新區(qū)高三4月統(tǒng)一檢測文科數(shù)學(xué)試卷(解析版) 題型:填空題
在區(qū)間內(nèi)任取兩個數(shù),則使方程的兩個根分別作為橢圓與雙曲線的離心率的概率為 .
查看答案和解析>>
科目: 來源:2012-2013學(xué)年四川省成都高新區(qū)高三4月統(tǒng)一檢測文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知向量的模長都為,且,若正數(shù)滿足則的最大值為 ;
查看答案和解析>>
科目: 來源:2012-2013學(xué)年四川省成都高新區(qū)高三4月統(tǒng)一檢測文科數(shù)學(xué)試卷(解析版) 題型:填空題
在直角坐標(biāo)系內(nèi),點實施變換后,對應(yīng)點為,給出以下命題:
①圓上任意一點實施變換后,對應(yīng)點的軌跡仍是圓;
②若直線上每一點實施變換后,對應(yīng)點的軌跡方程仍是則;
③橢圓上每一點實施變換后,對應(yīng)點的軌跡仍是離心率不變的橢圓;
④曲線:上每一點實施變換后,對應(yīng)點的軌跡是曲線,是曲線上的任意一點,是曲線上的任意一點,則的最小值為。
以上正確命題的序號是 (寫出全部正確命題的序號).
查看答案和解析>>
科目: 來源:2012-2013學(xué)年四川省成都高新區(qū)高三4月統(tǒng)一檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量,,,函數(shù)的最大值為.
(Ⅰ)求;
(Ⅱ)將函數(shù)的圖像向左平移個單位,再將所得圖像上各點的橫坐標(biāo)縮短為原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求在上的值域.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年四川省成都高新區(qū)高三4月統(tǒng)一檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
某同學(xué)參加省學(xué)業(yè)水平測試,物理、化學(xué)、生物獲得等級和獲得等級不是的機會相等,物理、化學(xué)、生物獲得等級的事件分別記為、、,物理、化學(xué)、生物獲得等級不是的事件分別記為、、.
(Ⅰ)試列舉該同學(xué)這次水平測試中物理、化學(xué)、生物成績是否為的所有可能結(jié)果(如三科成績均為記為);
(Ⅱ)求該同學(xué)參加這次水平測試獲得兩個的概率;
(Ⅲ)試設(shè)計一個關(guān)于該同學(xué)參加這次水平測試物理、化學(xué)、生物成績情況的事件,使該事件的概率大于,并說明理由.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年四川省成都高新區(qū)高三4月統(tǒng)一檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在直角梯形中,,∥,,,將沿折起,使平面平面,得到幾何體,如圖2所示.
(Ⅰ)求證:平面;
(Ⅱ)求幾何體的體積.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年四川省成都高新區(qū)高三4月統(tǒng)一檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列的前n項和為,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令,數(shù)列的前n項和為,若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年四川省成都高新區(qū)高三4月統(tǒng)一檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)(Ⅰ)若函數(shù)在上單調(diào)遞減,在區(qū)間單調(diào)遞增,求的值;
(Ⅱ)若函數(shù)在上有兩個不同的極值點,求的取值范圍;
(Ⅲ)若方程有且只有三個不同的實根,求的取值范圍。
查看答案和解析>>
科目: 來源:2012-2013學(xué)年四川省成都高新區(qū)高三4月統(tǒng)一檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)橢圓的離心率,是其左右焦點,點是直線(其中)上一點,且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點,滿足,求(為坐標(biāo)原點)面積的最小值.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年四川省成都高新區(qū)高三4月統(tǒng)一檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知是虛數(shù)單位,復(fù)數(shù)(其中)是純虛數(shù),則( )
A.-2 B.2 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com