科目: 來源:2013屆浙江省杭州七校高二第二學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知命題“橢圓的焦點(diǎn)在軸上”;
命題在上單調(diào)遞增,若“”為假,求的取值范圍.
【解析】主要考查了命題中復(fù)合命題的真值問題的判定,以及橢圓,導(dǎo)數(shù)的運(yùn)用。
首先求解若p為真,則m2.
若q為真,=0在R上恒成立。
所以 所以
而要是為假,則,這樣就可以得到了。
若p為真,則m2. 2分
若q為真,=0在R上恒成立。
所以 所以 3分
若為假,所以為真 2分
所以m2且, 所以
查看答案和解析>>
科目: 來源:2013屆浙江省杭州七校高二第二學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
在復(fù)平面內(nèi), 是原點(diǎn),向量對應(yīng)的復(fù)數(shù)是,=2+i。
(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對稱點(diǎn)為點(diǎn)B,求向量對應(yīng)的復(fù)數(shù)和;
(Ⅱ)復(fù)數(shù),對應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個圓上?并證明你的結(jié)論。
【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1) ∴B(2,-1) ∴ =(0,-2) ∴=-2i ∵ (2+i)(-2i)=2-4i, ∴ =
第二問中,由題意得,=(2,1) ∴
同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,
∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1) ∴ =(0,-2) ∴=-2i 3分
∵ (2+i)(-2i)=2-4i, ∴ = 2分
(Ⅱ)A、B、C、D四點(diǎn)在同一個圓上。 2分
證明:由題意得,=(2,1) ∴
同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,
∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上
查看答案和解析>>
科目: 來源:2013屆浙江省杭州七校高二第二學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知,是橢圓左右焦點(diǎn),它的離心率,且被直線所截得的線段的中點(diǎn)的橫坐標(biāo)為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是其橢圓上的任意一點(diǎn),當(dāng)為鈍角時,求的取值范圍。
【解析】解:因?yàn)榈谝粏栔,利用橢圓的性質(zhì)由得 所以橢圓方程可設(shè)為:,然后利用
得得
橢圓方程為
第二問中,當(dāng)為鈍角時,, 得
所以 得
解:(Ⅰ)由得 所以橢圓方程可設(shè)為:
3分
得得
橢圓方程為 3分
(Ⅱ)當(dāng)為鈍角時,, 得 3分
所以 得
查看答案和解析>>
科目: 來源:2013屆浙江省杭州七校高二第二學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(Ⅰ)若函數(shù)恰好有兩個不同的零點(diǎn),求的值。
(Ⅱ)若函數(shù)的圖象與直線相切,求的值及相應(yīng)的切點(diǎn)坐標(biāo)。
【解析】第一問中,利用
當(dāng)時,在單調(diào)遞增,此時只有一個零點(diǎn);
當(dāng)時,或,得
第二問中,設(shè)切點(diǎn)為,則
所以,當(dāng)時,為;當(dāng)時,為
解:(Ⅰ) 2分
當(dāng)時,在單調(diào)遞增,此時只有一個零點(diǎn);
當(dāng)時,或,得 4分
(Ⅱ)設(shè)切點(diǎn)為,則 3分
所以,當(dāng)時,為;當(dāng)時,為
查看答案和解析>>
科目: 來源:2013屆浙江省杭州七校高二第二學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知直線()與拋物線:和圓:都相切,是的焦點(diǎn).
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動點(diǎn),以為切點(diǎn)作拋物線的切線,直線交軸于點(diǎn),以、為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為, 直線與軸交點(diǎn)為,連接交拋物線于、兩點(diǎn),求△的面積的取值范圍.
【解析】第一問中利用圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去)
設(shè)與拋物線的相切點(diǎn)為,又,得,.
代入直線方程得:,∴ 所以,
第二問中,由(Ⅰ)知拋物線方程為,焦點(diǎn). ………………(2分)
設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.
令,得切線交軸的點(diǎn)坐標(biāo)為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線
第三問中,設(shè)直線,代入得結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去). …………………(2分)
設(shè)與拋物線的相切點(diǎn)為,又,得,.
代入直線方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn). ………………(2分)
設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.
令,得切線交軸的點(diǎn)坐標(biāo)為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線上.…(2分)
(Ⅲ)設(shè)直線,代入得, ……)得, …………………………… (2分)
,
.△的面積范圍是
查看答案和解析>>
科目: 來源:2014屆浙江省杭州地區(qū)七校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
若角的終邊上有一點(diǎn),則( )
(A) (B) (C) (D)
查看答案和解析>>
科目: 來源:2014屆浙江省杭州地區(qū)七校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
已知向量,且與平行,則( )
(A). (B) (C). (D)
查看答案和解析>>
科目: 來源:2014屆浙江省杭州地區(qū)七校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
已知且,則的終邊在( )
(A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限
查看答案和解析>>
科目: 來源:2014屆浙江省杭州地區(qū)七校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
已知,,則在上的投影為( )
(A) (B) (C) (D)
查看答案和解析>>
科目: 來源:2014屆浙江省杭州地區(qū)七校高一下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
已知,,則( )
(A) (B) (C) (D)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com