科目: 來源: 題型:解答題
已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)已知橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
一動(dòng)圓與圓外切,與圓內(nèi)切.
(I)求動(dòng)圓圓心M的軌跡方程.(II)試探究圓心M的軌跡上是否存在點(diǎn),使直線與的斜率?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo))
查看答案和解析>>
科目: 來源: 題型:解答題
(12分)過點(diǎn)Q 作圓C:的切線,切點(diǎn)為D,且QD=4.
(1)求的值;
(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點(diǎn),過點(diǎn)P作圓C的切線l,且l交x軸于點(diǎn)A,交y 軸于點(diǎn)B,設(shè),求的最小值(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分) 已知點(diǎn),直線及圓.
(1)求過點(diǎn)的圓的切線方程;
(2)若直線與圓相切,求的值;
(3)若直線與圓相交于兩點(diǎn),且弦的長(zhǎng)為,求的值.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分) 已知圓過兩點(diǎn),且圓心在上.
(1)求圓的方程;
(2)設(shè)是直線上的動(dòng)點(diǎn),是圓的兩條切線,為切點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(1)求曲線C1的方程;
(2)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于
點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.
(1)過C1的左頂點(diǎn)引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn).若l與圓x2+y2=1相切,求證:OP⊥OQ;
查看答案和解析>>
科目: 來源: 題型:解答題
(本題滿分16分)
已知圓:,設(shè)點(diǎn)是直線:上的兩點(diǎn),它們的橫坐標(biāo)分別
是,點(diǎn)的縱坐標(biāo)為且點(diǎn)在線段上,過點(diǎn)作圓的切線,切點(diǎn)為
(1)若,,求直線的方程;
(2)經(jīng)過三點(diǎn)的圓的圓心是,
①將表示成的函數(shù),并寫出定義域.
②求線段長(zhǎng)的最小值
查看答案和解析>>
科目: 來源: 題型:解答題
(本題滿分15分)
設(shè)有半徑為3的圓形村落,、兩人同時(shí)從村落中心出發(fā)。一直向北直行;先向東直行,出村后一段時(shí)間,改變前進(jìn)方向,沿著與村落邊界相切的直線朝所在的方向前進(jìn)。
(1)若在距離中心5的地方改變方向,建立適當(dāng)坐標(biāo)系,
求:改變方向后前進(jìn)路徑所在直線的方程
(2)設(shè)、兩人速度一定,其速度比為,且后來恰與相遇.問兩人在何處相遇?
(以村落中心為參照,說明方位和距離)
查看答案和解析>>
科目: 來源: 題型:解答題
(本題滿分15分)如圖,A點(diǎn)在x軸上方,外接圓半徑,弦在軸上且軸垂直平分邊,
(1)求外接圓的標(biāo)準(zhǔn)方程
(2)求過點(diǎn)且以為焦點(diǎn)的橢圓方程
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com