相關(guān)習(xí)題
 0  154806  154814  154820  154824  154830  154832  154836  154842  154844  154850  154856  154860  154862  154866  154872  154874  154880  154884  154886  154890  154892  154896  154898  154900  154901  154902  154904  154905  154906  154908  154910  154914  154916  154920  154922  154926  154932  154934  154940  154944  154946  154950  154956  154962  154964  154970  154974  154976  154982  154986  154992  155000  266669 

科目: 來源: 題型:解答題

(本小題滿分14分)
設(shè)橢圓)的兩個焦點是),且橢圓與圓有公共點.
(1)求的取值范圍;
(2)若橢圓上的點到焦點的最短距離為,求橢圓的方程;
(3)對(2)中的橢圓,直線)與交于不同的兩點、,若線段的垂直平分線恒過點,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

(本題15分)已知點是橢圓E)上一點,F1、F2分別是橢圓E的左、右焦點,O是坐標(biāo)原點,PF1x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A、B是橢圓E上兩個動點,).求證:直線AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)△PAB面積取得最大值時,求λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

(本題滿分12分)設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且?若存在,寫出該圓的方程,若不存在說明理由。

查看答案和解析>>

科目: 來源: 題型:解答題

(本題滿分12分)
雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經(jīng)過右焦點垂直于的直線分別交兩點.已知成等差數(shù)列,且同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

已知m>1,直線,橢圓C:,分別為橢圓C的左、右焦點.
(Ⅰ)當(dāng)直線過右焦點時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)
如圖,為橢圓上的一個動點,弦、分別過焦點、,當(dāng)垂直于軸時,恰好有

(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè).
①當(dāng)點恰為橢圓短軸的一個端點時,求的值;
②當(dāng)點為該橢圓上的一個動點時,試判斷是否為定值?
若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

橢圓C:=1(a>b>0)的兩個焦點分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個端點,且滿足=0,點N( 0,3 )到橢圓上的點的最遠(yuǎn)距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,;問A、B兩點能否關(guān)于過點P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分12分)設(shè)直線與橢圓相交于兩個不同的點,與軸相交于點,記為坐標(biāo)原點.
(1)證明:
(2)若的面積及橢圓方程.

查看答案和解析>>

科目: 來源: 題型:解答題

(本小題滿分14分)
已知橢圓的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點,坐標(biāo)原點到直線的距離為,求
面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案