相關習題
 0  202170  202178  202184  202188  202194  202196  202200  202206  202208  202214  202220  202224  202226  202230  202236  202238  202244  202248  202250  202254  202256  202260  202262  202264  202265  202266  202268  202269  202270  202272  202274  202278  202280  202284  202286  202290  202296  202298  202304  202308  202310  202314  202320  202326  202328  202334  202338  202340  202346  202350  202356  202364  266669 

科目: 來源: 題型:

已知橢圓Г的方程為
x2
a2
+
y2
b2
=1(a>b>0)點A,B分別為Г上的兩個動點,O為坐標原點,且OA⊥OB;其中OA,OB稱為橢圓的一條半徑.
(1)求證:
1
|OA|2
+
1
|OB|2
=
1
a2
+
1
b2
;|OA|2+|OB|2的最小值為
4a2b2
a2+b2

(2)過點O作OH⊥AB于H,求證:|OH|=
ab
a2+b2
;S△OAB的最小值是
a2b2
a2+b2
;
(3)將(1)(2)的結論推廣至雙曲線,結論是否依然成立,若成立,證明你的結論;若不成立,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=cos(ωx+φ)(ω>0,0<φ<π)為R上的奇函數(shù),該函數(shù)的部分圖象如圖所表示,A,B分別為最高點與最低點,并且兩點間的距離為2
2
,現(xiàn)有下面的3個命題:
(1)函數(shù)y=|f(x)|的最小正周期是2;
(2)函數(shù)y=f(x-
1
2
)
在區(qū)間[0,1]上單調遞減;
(3)直線x=1是函數(shù)y=f(x+1)的圖象的一條對稱軸.
其中正確的命題是
 

查看答案和解析>>

科目: 來源: 題型:

下列說法正確的是( 。
①圓的周長與該圓的半徑具有相關關系;
②線性回歸方程對應的直線y=bx+a至少經(jīng)過其樣本數(shù)據(jù)點(x1,y1)(x2,y2),…(xn,yn)中的一個點;③在殘差圖中,殘差點分布的代狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
④在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好.
A、①③④B、③④
C、②③④D、①④

查看答案和解析>>

科目: 來源: 題型:

數(shù)列{an}中,a1=
1
2
,an+1=
an-1
an
,則該數(shù)列的前22項和等于
 

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(
2
,1),
b
=(sin(2x-
π
4
),0),函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的單調遞減區(qū)間;
(2)當x∈[0,
π
2
]時,求函數(shù)f(x)的最值及相應x的取值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
2
3
sin(x-
π
3
),x∈[0,
π
2
],那么這個函數(shù)的值域為
 

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系中,已知動點M(x,y),點A(0,1)、B(0,-1),D(1,0),點N與點M關于直線y=x對稱,且
AN
BN
=
1
2
x2,直線l是過點D的任意一條直線.
(1)求動點M所在曲線C的軌跡方程;
(2)設直線l與曲線C交于G、H兩點,且|GH|=
3
2
2
,求直線l的方程;
(3)若直線l與曲線C交于G、H兩點,與線段AB交于點P(點P不同于點O、A、B),直線GB與直線HA交于點O,求證:
OP
OQ
是定值.

查看答案和解析>>

科目: 來源: 題型:

動點P與點F(0,1)的距離和它到直線l:y=-1的距離相等,記點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)設點A(0,a)(a>2),動點T在曲線C上運動時,|AT|的最短距離為a-1,求a的值以及取到最小值時點T的坐標;
(3)設P1,P2為曲線C的任意兩點,滿足OP1⊥OP2(O為原點),試問直線P1P2是否恒過一個定點?如果是,求出定點坐標;如果不是,說明理由.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系xoy中,動點M到兩定點F1(0,-
3
),F(xiàn)2(0,
3
)的距離之和為4,設點M的軌跡是曲線C.已知直線l與曲線C交于A(x1,y1),B(x2,y2)兩點,
m
=(2x1,y1),
n
=(2x2,y2),且m⊥n.
(1)若直線l過曲線C的焦點F(0,c) (c為半焦距),求直線l的斜率k的值;
(2)△AOB的面積是否為定值?如果是,請給予證明; 如果不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知點A,B的坐標分別是(0,-1),(0,1),直線AM,BM相交于點M,且直線AM,BM的斜率之積為-
1
2

(1)求點M的軌跡C的方程
(2)過D(2,0)的直線l與軌跡C有兩個不同的交點時,求l的斜率的取值范圍;
(3)若過D(2,0)的直線l與(1)中的軌跡C交于不同的E、F(E在D、F之間),求△ODE與△ODF的面積之比的取值范圍(O為坐標原點).

查看答案和解析>>

同步練習冊答案