相關(guān)習(xí)題
 0  207854  207862  207868  207872  207878  207880  207884  207890  207892  207898  207904  207908  207910  207914  207920  207922  207928  207932  207934  207938  207940  207944  207946  207948  207949  207950  207952  207953  207954  207956  207958  207962  207964  207968  207970  207974  207980  207982  207988  207992  207994  207998  208004  208010  208012  208018  208022  208024  208030  208034  208040  208048  266669 

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2lnx+a(a為實(shí)常數(shù)).
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[
1
2
,2]上的值域.

查看答案和解析>>

科目: 來(lái)源: 題型:

解方程:5x+1=3x2-1

查看答案和解析>>

科目: 來(lái)源: 題型:

已知實(shí)數(shù)a>0,函數(shù)f(x)=ax(x-2)2(x∈R)有極大值32.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求實(shí)數(shù)a的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知集合A={x丨x2-3x+2=0},B={x丨a-1<x<2a+3},A∩B=A,求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

求f(x)=x2+
x4
x2-3
(x2>3)的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=4,AD=2,AA1=2,F(xiàn)是棱BC的中點(diǎn),點(diǎn)E在棱C1D1上,且D1E=λEC1(λ為實(shí)數(shù)).
(1)當(dāng)λ=
1
3
時(shí),求直線EF與平面D1AC所成角的正弦值的大;
(2)試問(wèn):直線EF與直線EA能否垂直?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問(wèn)卷調(diào)查.得到了如下的統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
人數(shù)525302515
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
人數(shù)1020402010
(1)完成下面的2×2列聯(lián)表;
上網(wǎng)時(shí)間少于60分鐘上網(wǎng)時(shí)間不少于60分鐘合計(jì)
男生
女生
合計(jì)
(2)能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?

查看答案和解析>>

科目: 來(lái)源: 題型:

圓(x-1)2+(y+2)2=5與圓(x+2)2+(y-2)2=13相交于A、B兩點(diǎn)
(1)求直線AB的方程
(2)求以AB為直徑的圓的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

物體在常溫下的溫度變化可以用牛頓冷卻規(guī)律來(lái)描述:設(shè)物體的初始溫度是T0,經(jīng)過(guò)一定時(shí)間t后的溫度是T,則T-Ta=(T0-Ta)•(
1
2
)
t
h
,其中Ta表示環(huán)境溫度,h稱(chēng)為半衰期.現(xiàn)有一杯用88℃熱水沖的速溶咖啡,放在24℃的房間中,如果咖啡降溫到40℃需要20min,那么降溫到35℃時(shí),需要多長(zhǎng)時(shí)間?

查看答案和解析>>

科目: 來(lái)源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,A<B<C,A,B,C成等差數(shù)列,公差為θ,且
1
sinA
,
3
2
2sinB
,
1
sinC
也成等差數(shù)列.
(Ⅰ)求θ;
(Ⅱ)若a=
6
-
2
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案