相關習題
 0  234688  234696  234702  234706  234712  234714  234718  234724  234726  234732  234738  234742  234744  234748  234754  234756  234762  234766  234768  234772  234774  234778  234780  234782  234783  234784  234786  234787  234788  234790  234792  234796  234798  234802  234804  234808  234814  234816  234822  234826  234828  234832  234838  234844  234846  234852  234856  234858  234864  234868  234874  234882  266669 

科目: 來源: 題型:解答題

20.如圖所示,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一點.
(Ⅰ)若BM=2MP,求證:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,若二面角B-AC-M的余弦值為$\frac{2}{3}$,求$\frac{PM}{PB}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.某中學為了解初三年級學生“擲實心球”項目的整體情況,隨機抽取男、女生各20名進行測試,記錄的數據如下:

已知該項目評分標準為:
 男生投擲距離(米)[5.4,6.0)[6.0,6.6)[6.6,7.4)[7.4,7.8)[7.8,8.6)[8.6,10.0)[10.0,+∞)
 
 女生投擲距離(米)
 
[5.1,5.4)[5.4,5.6)[5.6,6.4)[6.4,6.8)[6.8,7.2)[7.2,7.6)[7.6,+∞)
 個人得分(分) 
 4 5 6 7 8 9 10
注:滿分10分,且得9分以上(含9分)定為“優(yōu)秀”.
(Ⅰ)求上述20名女生得分的中位數和眾數;
(Ⅱ)從上述20名男生中,隨機抽取2名,求抽取的2名男生中優(yōu)秀人數X的分布列;
(Ⅲ)根據以上樣本數據和你所學的統(tǒng)計知識,試估計該年級學生實心球項目的整體情況.(寫出兩個結論即可)

查看答案和解析>>

科目: 來源: 題型:選擇題

18.在數列{an}中,a1=2,2(an+1-1)(an-1)+an+1-an=0(n∈N*),若an<$\frac{201}{199}$,則n的最小值為(  )
A.50B.51C.100D.101

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知矩陣M=$[\begin{array}{l}{1}&\\{c}&{2}\end{array}]$有特征值λ1=4及對應的一個特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{2}\\{3}\end{array}]$,則直線2x-y+3=0在矩陣M對應的變換作用下的直線方程是7x-5y-12=0.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知直線l1:y=x+2,l2:y=x-2,矩陣$M=({\begin{array}{l}0&2\\ 1&0\end{array}})$.
(Ⅰ)求直線l1經過矩陣M變換之后得到的直線方程;
(Ⅱ)若將(Ⅰ)中所得直線再進行伸縮變換N之后得到直線l2,求伸縮變換的矩陣N.

查看答案和解析>>

科目: 來源: 題型:填空題

15.在棱長為1的正方體ABCD-A1B1C1D1中,點P是正方體棱上一點(不包括棱的端點),若滿足|PA|+|PC1|=m的點P的個數為6,則m的取值范圍是$(\sqrt{3},\sqrt{5})$.

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AC=2$\sqrt{2}$,BC=BB1=4,D、E分別為BC,BB1的中點.
(Ⅰ)求證:CE⊥平面AC1D;
(Ⅱ)求直線AB與平面AC1D所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.函數f(x)=$\frac{xln(x-1)}{x-2}$,x∈[1.5,3]的值域為(0,3ln2].

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知函數f(x)=ex-2ax與g(x)=-x3+ax2-(2a+1)x的圖象不存在相互平行或重合的切線,則實數a的取值范圍[$-\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知m、n∈R+,f(x)=|x+m|+|2x-n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+$\frac{{n}^{2}}{4}$)的最小值為8.

查看答案和解析>>

同步練習冊答案