相關(guān)習(xí)題
 0  235035  235043  235049  235053  235059  235061  235065  235071  235073  235079  235085  235089  235091  235095  235101  235103  235109  235113  235115  235119  235121  235125  235127  235129  235130  235131  235133  235134  235135  235137  235139  235143  235145  235149  235151  235155  235161  235163  235169  235173  235175  235179  235185  235191  235193  235199  235203  235205  235211  235215  235221  235229  266669 

科目: 來源: 題型:選擇題

3.對于函數(shù)$f(x)=\left\{\begin{array}{l}1-\left|x+1\right|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}\right.$,有如下三個(gè)命題:
①f(x)的單調(diào)遞減區(qū)間為[2n-3,2n-2](n∈N*
②f(x)的值域?yàn)閇0,+∞)
③若-2<a≤0,則方程f(x)=x+a在區(qū)間[-2,0]內(nèi)有3個(gè)不相等的實(shí)根
其中,真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知空間四邊形ABCD中,對角線AC=$2\sqrt{3}$,BD=2,E、F分別是AB、CD的中點(diǎn),EF=2,求異面直線AC與EF所成的角.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.下列說法正確的是( 。
A.若p∧q為假命題,則p、q均為假命題
B.命題“若x2=1,則x=1”為真命題
C.命題“若x=y,則sinx=siny”的逆否命題為真命題
D.命題“存在一個(gè)實(shí)數(shù)x,使不等式x2-3x+6<0成立”為真命題

查看答案和解析>>

科目: 來源: 題型:解答題

20.設(shè)p:$\frac{2x-1}{x-1}≤0$,q:x2-(2a+1)x+a(a+1)≤0,若?q是?p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

19.對于任意實(shí)數(shù)x,不等式(a-2)x2-2(a-2)x-4<0恒成立,則實(shí)數(shù)a的取值范圍是(-2,2].

查看答案和解析>>

科目: 來源: 題型:選擇題

18.若$\frac{cos2α}{{cos(α-\frac{π}{4})}}=-\frac{1}{2},則sinα-cosα$等于( 。
A.$-\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

17.在等比數(shù)列{an}中,S3=3a3,則其公比q的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1或-$\frac{1}{2}$D.-1或$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為${S_n}=3{n^2}+8n-6$,{bn}是等差數(shù)列,且an=bn+bn+1(n≥2).
(I)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(II)令${c_n}={b_n}•{2^n}+{2^{n+1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若函數(shù)f(x)=ax-lnx在x=$\frac{\sqrt{2}}{2}$處取得極值,則實(shí)數(shù)a的值為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.△ABC的頂點(diǎn)A(5,0),B(-5,0),△ABC的周長為22,則頂點(diǎn)C的軌跡方程是( 。
A.$\frac{x^2}{36}+\frac{y^2}{11}=1$B.$\frac{x^2}{25}+\frac{y^2}{11}=1$
C.$\frac{x^2}{36}+\frac{y^2}{11}=1({y≠0})$D.$\frac{x^2}{9}+\frac{y^2}{16}=1({y≠0})$

查看答案和解析>>

同步練習(xí)冊答案