相關(guān)習(xí)題
 0  235102  235110  235116  235120  235126  235128  235132  235138  235140  235146  235152  235156  235158  235162  235168  235170  235176  235180  235182  235186  235188  235192  235194  235196  235197  235198  235200  235201  235202  235204  235206  235210  235212  235216  235218  235222  235228  235230  235236  235240  235242  235246  235252  235258  235260  235266  235270  235272  235278  235282  235288  235296  266669 

科目: 來源: 題型:填空題

4.?dāng)?shù)列1,1,2,3,x,8,13,21,…中的x值為5.

查看答案和解析>>

科目: 來源: 題型:解答題

3.
商店名稱ABCDE
銷售額x(千萬元)35679
利潤(rùn)額y(百萬元)23345
(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說明兩個(gè)變量有怎樣的相關(guān)性.
(2)用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷售額x的回歸直線方程.
(3)當(dāng)銷售額為4(千萬元)時(shí),估計(jì)利潤(rùn)額的大。

查看答案和解析>>

科目: 來源: 題型:解答題

2.對(duì)某種品牌的燈泡進(jìn)行壽命跟蹤調(diào)查,統(tǒng)計(jì)如下:
壽命(h)100~200200~300300~400400~500500~600
個(gè)數(shù)32030804030
(Ⅰ)列出頻率分布表;
(Ⅱ)畫出頻率分布直方圖;
(Ⅲ)求燈泡壽命在100h~400h的頻率.

查看答案和解析>>

科目: 來源: 題型:填空題

1.如圖,在邊長(zhǎng)為25cm的正方形中挖去邊長(zhǎng)為18cm的兩個(gè)等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問粒子落在中間帶形區(qū)域的概率是多少$\frac{301}{625}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知函數(shù)f(x)=x2+bx+c且f(-1)=f(3),則( 。
A.f (1)>c>f (-1)B.f (1)<c<f (-1)C.c>f (-1)>f (1)D.c<f (-1)<f (1)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.設(shè)an=-n2+9n+10,則數(shù)列{an}前n項(xiàng)和最大值n的值為( 。
A.4B.5C.9或10D.4或5

查看答案和解析>>

科目: 來源: 題型:解答題

18.設(shè)直線l經(jīng)過點(diǎn)P(3,4),圓C的方程為(x-1)2+(y+1)2=4.
(1)若直線l經(jīng)過圓C的圓心,求直線l的斜率;
(2)若直線l與圓C交于兩個(gè)不同的點(diǎn),求直線l的斜率的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.下列不等式中,正確的是( 。
A.tan$\frac{4π}{7}$>tan$\frac{3π}{7}$B.tan$\frac{2π}{5}$<tan$\frac{3π}{5}$
C.tan(-$\frac{13π}{7}$)>tan(-$\frac{15π}{8}$)D.tan(-$\frac{13π}{4}$)<tan(-$\frac{12π}{5}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

16.若圓C經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn)(4,0),且與直線y=1相切,則圓C的方程是( 。
A.${(x-2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$B.${(x-2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$
C.${(x+2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$D.${(x+2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

15.(I)已知直線y=2x是△ABC中∠C的平分線所在的直線,若點(diǎn)A,B的坐標(biāo)分別是(-4,2),(3,1),求點(diǎn)C的坐標(biāo).
(II)已知點(diǎn)A(1,1),B(2,2),點(diǎn)P在直線y=$\frac{1}{2}$x上,求|PA|2+|PB|2取得最小值時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案