相關(guān)習(xí)題
 0  235927  235935  235941  235945  235951  235953  235957  235963  235965  235971  235977  235981  235983  235987  235993  235995  236001  236005  236007  236011  236013  236017  236019  236021  236022  236023  236025  236026  236027  236029  236031  236035  236037  236041  236043  236047  236053  236055  236061  236065  236067  236071  236077  236083  236085  236091  236095  236097  236103  236107  236113  236121  266669 

科目: 來(lái)源: 題型:解答題

9.設(shè)a∈R,函數(shù)f(x)=ax3-3x2,x=2是函數(shù)y=f(x)的極值點(diǎn).
(1)求a的值;
(2)求函數(shù)f(x)在區(qū)間[-1,5]上的最值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.已知球O的表面積是其直徑的$2\sqrt{3}π$倍,則球O的體積為4$\sqrt{3}$π.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.“-3≤m≤0”是“直線mx-y-2m=0與函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{-{x^2}+16},-4≤x≤0\\ 2x-2,x>0\end{array}\right.$的圖象有兩個(gè)交點(diǎn)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.${(x+\frac{1}{x})^9}$展開(kāi)式中的第四項(xiàng)是( 。
A.56x3B.84x3C.56x4D.84x4

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.如圖,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是C1D的中點(diǎn),P是棱CC1所在直線上的動(dòng)點(diǎn).則下列三個(gè)命題:
(1)CD⊥PE           
(2)EF∥平面ABC1
(3)V${\;}_{P-{A}_{1}D{D}_{1}}$=V${\;}_{{D}_{1}-ADE}$
其中正確命題的個(gè)數(shù)有①②③.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.一組數(shù)據(jù)為-1,-1,0,1,1,則這組數(shù)據(jù)的方差為0.8.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

3.已知集合A=$\{x|{(\frac{1}{2})^x}<1\}$,B={x|lgx>0}則A∪B等于(  )
A.{x|x>0}B.{x|x>1}C.RD.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.“珠算之父”程大位是我國(guó)明代偉大是數(shù)學(xué)家,他的應(yīng)用數(shù)學(xué)巨著《算法統(tǒng)綜》的問(wèn)世,標(biāo)志著我國(guó)的算法由籌算到珠算轉(zhuǎn)變的完成.程大位在《算法統(tǒng)綜》中常以詩(shī)歌的形式呈現(xiàn)數(shù)學(xué)問(wèn)題,其中有一首“竹筒容米”問(wèn)題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)三升九,上梢四節(jié)貯三升,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”([注釋]三升九:3.9升.次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識(shí)求得中間兩節(jié)的容積為( 。
A.1.9升B.2.1升C.2.2升D.2.3升

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sin(x+α),x<0}\\{cos(x+β),x>0}\end{array}\right.$是偶函數(shù),則下列結(jié)論可能成立的是( 。
A.α=$\frac{π}{4}$,β=-$\frac{π}{4}$B.$α=\frac{2π}{3},β=\frac{π}{6}$C.$α=\frac{π}{3},β=\frac{π}{6}$D.$α=\frac{5π}{6},β=\frac{2π}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為$ρ=2\sqrt{3}sinθ$.
(1)寫(xiě)出曲線C的直角坐標(biāo)方程;
(2)已知直線l與x軸的交點(diǎn)為P,與曲線C的交點(diǎn)為A,B,若AB的中點(diǎn)為D,求|PD|的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案