相關(guān)習題
 0  246049  246057  246063  246067  246073  246075  246079  246085  246087  246093  246099  246103  246105  246109  246115  246117  246123  246127  246129  246133  246135  246139  246141  246143  246144  246145  246147  246148  246149  246151  246153  246157  246159  246163  246165  246169  246175  246177  246183  246187  246189  246193  246199  246205  246207  246213  246217  246219  246225  246229  246235  246243  266669 

科目: 來源: 題型:解答題

19.已知拋物線C1:y2=2px(p>0)的焦點為F,拋物線上存在一點G到焦點的距離為3,且點G在圓C:x2+y2=9上.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)已知橢圓C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一個焦點與拋物線C1的焦點重合,且離心率為$\frac{1}{2}$.直線l:y=kx-4交橢圓C2于A、B兩個不同的點,若原點O在以線段AB為直徑的圓的外部,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.設(shè){an}是等差數(shù)列,{bn}是各項都為正整數(shù)的等比數(shù)列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)若數(shù)列{dn}滿足${d_n}{d_{n+1}}={(\frac{1}{2})^{-8+{{log}_2}{b_{n+1}}}}$(n∈N*),且d1=16,試求{dn}的通項公式及其前2n項和S2n

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,在正四棱臺ABCD-A1B1C1D1中,A1B1=a,AB=2a,$A{A_1}=\sqrt{2}a$,E、F分別是AD、AB的中點.
(Ⅰ)求證:平面EFB1D1∥平面BDC1;
(Ⅱ)求證:A1C⊥平面BDC1
注:底面為正方形,從頂點向底面作垂線,垂足是底面中心,這樣的四棱錐叫做正四棱錐.用一個平行于正四棱錐底面的平面去截該棱錐,底面與截面之間的部分叫做正四棱臺.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知向量$\overrightarrow a=(ksin\frac{x}{3},co{s^2}\frac{x}{3})$,$\overrightarrow b=(cos\frac{x}{3},-k)$,實數(shù)k為大于零的常數(shù),函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$,x∈R,且函數(shù)f(x)的最大值為$\frac{{\sqrt{2}-1}}{2}$.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,若$\frac{π}{2}$<A<π,f(A)=0,且b=2$\sqrt{2}$,a=2$\sqrt{10}$,求$\overrightarrow{AB}•\overrightarrow{AC}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.某區(qū)工商局、消費者協(xié)會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務(wù)活動,著力提升消費者維權(quán)意識.組織方從參加活動的群眾中隨機抽取120名群眾,按他們的年齡分組:第1組[20,30),第2組[30,40),第3組[40,50),第4組[50,60),第5組[60,70],得到的頻率分布直方圖如圖所示.
(Ⅰ)若電視臺記者要從抽取的群眾中選1人進行采訪,求被采訪人恰好在第2組或第4組的概率;
(Ⅱ)已知第1組群眾中男性有2人,組織方要從第1組中隨機抽取3名群眾組成維權(quán)志愿者服務(wù)隊,求至少有兩名女性的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點為F,過F作斜率為-1的直線交雙曲線的漸近線于點P,點P在第一象限,O為坐標原點,若△OFP的面積為$\frac{{{a^2}+{b^2}}}{8}$,則該雙曲線的離心率為$\frac{\sqrt{10}}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},\;x≤0\\|{log_2}x|,\;x>0\end{array}$則f(f(-1))=1.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知不共線的平面向量$\overrightarrow a$,$\overrightarrow$滿足$\overrightarrow a=(-2,2)$,$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\overrightarrow b)$,那么|$\overrightarrow b|$=2$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知函數(shù)f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2})$的圖象過點$(0,\sqrt{3})$,則f(x)的圖象的一個對稱中心是( 。
A.$(-\frac{π}{3},0)$B.$(-\frac{π}{6},0)$C.$(\frac{π}{6},0)$D.$(\frac{π}{4},0)$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.“0≤m≤1”是“函數(shù)f(x)=sinx+m-1有零點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案