相關(guān)習(xí)題
 0  246739  246747  246753  246757  246763  246765  246769  246775  246777  246783  246789  246793  246795  246799  246805  246807  246813  246817  246819  246823  246825  246829  246831  246833  246834  246835  246837  246838  246839  246841  246843  246847  246849  246853  246855  246859  246865  246867  246873  246877  246879  246883  246889  246895  246897  246903  246907  246909  246915  246919  246925  246933  266669 

科目: 來源: 題型:選擇題

10.函數(shù)f(x)=(1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$-$\frac{x^4}{4}$+…-$\frac{{{x^{2012}}}}{2012}$+$\frac{{{x^{2013}}}}{2013}$-$\frac{{{x^{2014}}}}{2014}$+$\frac{{{x^{2015}}}}{2015}}$)cos2x在區(qū)間[-3,3]上零點(diǎn)的個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目: 來源: 題型:解答題

9.某商場根據(jù)市場調(diào)研,決定從3種服裝商品、2種家電商品和4種日用商品中選出3種商品進(jìn)行促銷活動.
(Ⅰ)求選出的3種商品中至少有一種日用商品的概率;
(Ⅱ)被選中的促銷商品在現(xiàn)價的基礎(chǔ)上提高60元進(jìn)行銷售,同時提供3次抽獎的機(jī)會,第一次和第二次中獎均可獲得獎金40元,第三次中獎可獲得獎金30元,假設(shè)顧客每次抽獎時中獎與否是等可能的,顧客所得獎金總數(shù)為X元,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知數(shù)列{an}與{bn}滿足:a1+a2+a3+…+an=log2bn(n∈N*).若{an}為等差數(shù)列,且a1=2,b3=64b2
(Ⅰ)求an與bn
(Ⅱ)設(shè)cn═(an+n+1)•2${\;}^{{a}_{n}-2}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=2sinωx$({\sqrt{3}cosωx+sinωx})({x∈R})$的圖象的一條對稱軸為x=π,其中ω為常數(shù),且$ω∈({\frac{1}{3},1})$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若$f({\frac{6}{5}A})=3,b+c=3$,求a的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,莖葉圖記錄了某校甲班3名同學(xué)在一學(xué)年中去社會實(shí)踐基地A實(shí)踐的次數(shù)和乙班4名同學(xué)在同一學(xué)年中去社會實(shí)踐基地B實(shí)踐的次數(shù).乙班記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中用x表示.
(Ⅰ)如果x=7,求乙班4名同學(xué)實(shí)踐基地B實(shí)踐次數(shù)的中位數(shù)和方差;
(Ⅱ)如果x=9,從實(shí)踐次數(shù)大于8的同學(xué)中任選兩名同學(xué),求選出的兩名同學(xué)分別在甲、乙兩個班級且實(shí)踐次數(shù)的和大于20的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知函數(shù)f(x)=x2-cosx,則f$({\frac{3}{4}}),f({\frac{2}{3}}),f({-\frac{1}{2}})$的大小關(guān)系是( 。
A.$f({-\frac{1}{2}})<f({\frac{3}{4}})<f({\frac{2}{3}})$B.$f({-\frac{1}{2}})<f({\frac{2}{3}})<f({\frac{3}{4}})$C.$f({\frac{3}{4}})<f({\frac{2}{3}})<f({-\frac{1}{2}})$D.$f({\frac{2}{3}})<f({-\frac{1}{2}})<f({\frac{3}{4}})$

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知數(shù)列{an}與{bn}滿足:a1+a2+a3+…+an=log2bn(n∈N*).若{an}為等差數(shù)列,且a1=2,b3=64b2
(Ⅰ)求an與bn
(Ⅱ)設(shè)${c_n}=({{a_n}+n+1})•{2^{{a_n}-2}}$,數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn并比較$\frac{n}{{T}_{n}}$與$\frac{1}{3n+10}$的大。╪∈N*).

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(2sin$\frac{A}{2}$,cosA),$\overrightarrow{n}$=(1-2sin2$\frac{A}{4}$,-$\sqrt{15}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(Ⅰ)求角A的余弦值;
(Ⅱ)若a=$\sqrt{6}$,求△ABC的面積最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知x,y滿足約束條件$\left\{\begin{array}{l}x<0\\ y>0\\ x+y-2≤0\\ x-y+4≥0\end{array}\right.$,若目標(biāo)函數(shù)z=x+my(m≠0)取得最大值時最優(yōu)解有無數(shù)個,則m的值為1.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知拋物線C1:y2=2x的焦點(diǎn)F是雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一個頂點(diǎn),兩條曲線的一個交點(diǎn)為M,若|MF|=$\frac{3}{2}$,則雙曲線C2的離心率是(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{\sqrt{33}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案