相關習題
 0  248382  248390  248396  248400  248406  248408  248412  248418  248420  248426  248432  248436  248438  248442  248448  248450  248456  248460  248462  248466  248468  248472  248474  248476  248477  248478  248480  248481  248482  248484  248486  248490  248492  248496  248498  248502  248508  248510  248516  248520  248522  248526  248532  248538  248540  248546  248550  248552  248558  248562  248568  248576  266669 

科目: 來源: 題型:解答題

5.設{an}為等比數(shù)列,a1=1,a2=3.
(Ⅰ)求最小的自然數(shù)n,使an≥2014;
(Ⅱ)求和:${T_{2n}}=\frac{1}{a_1}-\frac{2}{a_2}+\frac{3}{a_3}-…-\frac{2n}{{{a_{2n}}}}$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.如果橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),滿足a,b,c成等比數(shù)列,則該橢圓為“優(yōu)美橢圓”,且其離心率e=$\frac{{\sqrt{5}-1}}{2}$;由此類比雙曲線,若也稱其為“優(yōu)美雙曲線”,那么你得到的正確結(jié)論為:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$中,若a,b,c成等比數(shù)列,則稱雙曲線為“優(yōu)美雙曲線”,且離心率$e=\frac{{\sqrt{5}+1}}{2}$..

查看答案和解析>>

科目: 來源: 題型:解答題

3.(1)已知a,b,c均為正數(shù),證明:a2+b2+c2+($\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$)2≥6$\sqrt{3}$,并確定a,b,c為何值時,等號成立.
(2)已知a,b,c均為正實數(shù),且a+b+c=1.求$\sqrt{4a+1}$+$\sqrt{4b+1}$+$\sqrt{4c+1}$的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.由直線x=$\frac{1}{2}$,x=2,曲線y=-$\frac{1}{x}$及x軸所圍圖形的面積為( 。
A.-2ln2B.2ln2C.$\frac{1}{2}ln2$D.$\frac{15}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.等差數(shù)列{an}的前n項和為Sn,若a2+a4+a6=18,則S7的值是(  )
A.21B.42C.28D.7

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知復數(shù)z1=2-bi,z2=1-i,若$\frac{{z}_{1}}{{z}_{2}}$是純虛數(shù),則實數(shù)b的值為( 。
A.0B.$-\frac{3}{2}$C.6D.-2

查看答案和解析>>

科目: 來源: 題型:選擇題

19.若sin(π-α)=$\frac{4}{5}$,α∈(0,$\frac{π}{2}$),則sin2α-cos2 $\frac{α}{2}$的值等于( 。
A.$\frac{4}{25}$B.$\frac{25}{4}$C.$\frac{25}{16}$D.$\frac{16}{25}$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知正三棱柱ABC-A1B1C1體積為$\frac{9}{4}$,底面是邊長為$\sqrt{3}$.若P為底面ABC的中心,則PA1與平面BB1P所成角的正切值大小為( 。
A.$\frac{1}{36}$B.$\frac{3}{109}$C.$\frac{{\sqrt{39}}}{13}$D.$\frac{1}{18}$

查看答案和解析>>

科目: 來源: 題型:選擇題

17.下列函數(shù)既是奇函數(shù),又在區(qū)間[-1,1]上單調(diào)遞減的是( 。
A.f(x)=sinxB.f(x)=ln$\frac{2-x}{2+x}$C.f(x)=-|x+1|D.f(x)=$\frac{1}{2}({e^x}-{e^{-x}})$

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(2x-1,-1)$\overrightarrow$=(2,x+1),$\overrightarrow{a}$$⊥\overrightarrow$,則x=1.

查看答案和解析>>

同步練習冊答案