相關(guān)習(xí)題
 0  251669  251677  251683  251687  251693  251695  251699  251705  251707  251713  251719  251723  251725  251729  251735  251737  251743  251747  251749  251753  251755  251759  251761  251763  251764  251765  251767  251768  251769  251771  251773  251777  251779  251783  251785  251789  251795  251797  251803  251807  251809  251813  251819  251825  251827  251833  251837  251839  251845  251849  251855  251863  266669 

科目: 來源: 題型:填空題

12.已知全集U=R,集合A=$\left\{{x\left|{\frac{1}{x}<1}\right.}\right\}$,則∁UA=[0,1].

查看答案和解析>>

科目: 來源: 題型:解答題

11.(1)將關(guān)于x的不等式|x-3|+|x-4|<2;
(2)如果關(guān)于x的不等式|x-3|+|x-4|<a的解集是空集,求實(shí)數(shù)a的取值范圍;
(3)對任意x∈R,|2-x|+|3+x|≥a2-4a恒成立,求a的取值范圍;
(4)已知m∈R,解關(guān)于x的不等式1-x≤|x-m|≤1+x.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,延長AB和DC相交于點(diǎn)P,若$\frac{PB}{PA}$=$\frac{1}{2}$,$\frac{PC}{PD}$=$\frac{1}{3}$,則$\frac{BC}{AD}$的值為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,四邊形ABCD是平行四邊形,點(diǎn)E在邊BA的延長線上,CE交AD于點(diǎn)F,∠ECA=∠D,求證:AC•BE=CE•AD.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知${∫}_{0}^{2}(m{e}^{mx}+sinx)dx={e}^{4}-cos2$,則${∫}_{-\frac{π}{m}}^{\frac{π}{m}}(cosx+\frac{3}{2-x})dx$=2+3ln$\frac{4+π}{4-π}$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=x3-x的圖象是曲線C
(1)求曲線C在點(diǎn)M(t,f(t))處的切線方程;
(2)求過點(diǎn)P(-1,0)的曲線C的切線方程;
(3)假設(shè)a>0,如果過點(diǎn)(a,b)可以作曲線C的三條切線,證明:-a<b<f(a)

查看答案和解析>>

科目: 來源: 題型:解答題

6.某化工廠生產(chǎn)一種化工產(chǎn)品,據(jù)負(fù)責(zé)該產(chǎn)品生產(chǎn)的部門預(yù)算,當(dāng)該產(chǎn)品年產(chǎn)量在50噸至300噸之間時,其生產(chǎn)的總成本y(萬元)與年產(chǎn)量x(噸)之間的部分對應(yīng)數(shù)據(jù)大致如下表:
生產(chǎn)量x(單位:噸)50100130180200250300
生產(chǎn)總成本y(單位:萬元)2750200017501800205027504050
(1)給出如下四個函數(shù):
①y=ax2+b,②y=$\frac{1}{10}{x}^{2}+ax+b$,③y=a•bx,④y=a•logbx.根據(jù)上表數(shù)據(jù),從上述四個函數(shù)中選取一個最恰當(dāng)?shù)暮瘮?shù)描述y與x的變化關(guān)系,并通過表中前兩組數(shù)據(jù),求出y與x的函數(shù)解析式;
(2)根據(jù)你求出的函數(shù)解析式,試問當(dāng)年產(chǎn)量為多少噸時,生產(chǎn)每噸的平均成本最低?每噸的最低成本是多少?
(3)若將每噸產(chǎn)品的出廠價定為16萬元,則年產(chǎn)量為多少噸時,方可使得全年的利潤最大?并求出全年的最大利潤.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知f(x)=$\frac{1-x}{1+x}$.
(1)求f(f(2)))的值;
(2)若實(shí)數(shù)a滿足f(a2)=$-\frac{3}{5}$,且lg2a-1<0,求a的值;
(3)設(shè)函數(shù)f1(x)=f(x)=$\frac{1-x}{1+x}$(x≠-1),對于一切正整數(shù)n,都有fn+1(x)=f1(fn(x)),且f3(x)=f4(x),求f2012(x)的值;
(4)設(shè)函數(shù)φ(x)=$\frac{1+x}{x-1}|x-2{|}^{\frac{1}{2}}$(x≠1),若函數(shù)g(x)=f(x)•φ(x),t=a2-2a+$\frac{13}{3}$(a∈R),試判斷g(1.2),g(2.5),g(t)的大小關(guān)系.(請按由大到小的順序排)

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知集合U={1,2,3,4,5,6,7},A={x∈R|數(shù)軸上x到3的距離等于1,或x到6的距離等于1},B={x∈Z|$\frac{2x-11}{2-x}≥0$},求(∁UA)∪(∁UB).

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知定義在區(qū)間(-1,1)上的函數(shù)$f(x)=\frac{ax-b}{{{x^2}+1}}$是奇函數(shù),且$f(\frac{1}{2})=\frac{2}{5}$,
(1)確定y=f(x)的解析式;
(2)判斷y=f(x)的單調(diào)性并用定義證明.

查看答案和解析>>

同步練習(xí)冊答案