相關(guān)習(xí)題
 0  256522  256530  256536  256540  256546  256548  256552  256558  256560  256566  256572  256576  256578  256582  256588  256590  256596  256600  256602  256606  256608  256612  256614  256616  256617  256618  256620  256621  256622  256624  256626  256630  256632  256636  256638  256642  256648  256650  256656  256660  256662  256666  256672  256678  256680  256686  256690  256692  256698  256702  256708  256716  266669 

科目: 來源: 題型:

【題目】已知f(x)=ex﹣ax2,曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.

(1)求a,b的值;

(2)求f(x)在[0,1]上的最大值;

(3)證明:當(dāng)x>0時,ex+(1﹣e)x﹣xlnx﹣1≥0.

查看答案和解析>>

科目: 來源: 題型:

【題目】我們用圓的性質(zhì)類比球的性質(zhì)如下:

p:圓心與弦(非直徑)中點的連線垂直于弦; q:球心與小圓截面圓心的連線垂直于截面.

p:與圓心距離相等的兩條弦長相等; q:與球心距離相等的兩個截面圓的面積相等.

p:圓的周長為Cd(d是圓的直徑); q:球的表面積為Sd2(d是球的直徑).

p:圓的面積為S=R·πd(R,d是圓的半徑與直徑); q:球的體積為V=R·πd2(R,d是球的半徑與直徑).

則上面的四組命題中,其中類比得到的q是真命題的有( )個

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

I若函數(shù)處取得極值,求曲線在點處的切線方程;

II若函數(shù)上的最小值是,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解學(xué)生身高情況,某校以的比例對全校1000名學(xué)生按性別進行分層抽樣調(diào)查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):

(1)計算所抽取的男生人數(shù),并估計男生身高的中位數(shù)(保留兩位小數(shù));

(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,(其中).

(1)求;

(2)試比較的大小,并用數(shù)學(xué)歸納法給出證明過程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知aR,函數(shù)

I若函數(shù)處取得極值,求曲線在點處的切線方程;

,函數(shù)上的最小值是的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】葫蘆島市某高中進行一項調(diào)查:2012年至2016年本校學(xué)生人均年求學(xué)花銷(單位:萬元)的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

年份代號

1

2

3

4

5

年求學(xué)花銷

3.2

3.5

3.8

4.6

4.9

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,分析2012年至2016年本校學(xué)生人均年求學(xué)花銷的變化情況,并預(yù)測該地區(qū)2017年本校學(xué)生人均年求學(xué)花銷情況.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目: 來源: 題型:

【題目】小明準(zhǔn)備利用暑假時間去旅游,媽媽為小明提供四個景點,九寨溝、泰山、長白山、武夷山.小明決定用所學(xué)的數(shù)學(xué)知識制定一個方案來決定去哪個景點:(如圖)曲線和直線交于點.以為起點,再從曲線上任取兩個點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為.若去九寨溝;若去泰山;若去長白山; 去武夷山.

(1)若從這六個點中任取兩個點分別為終點得到兩個向量,分別求小明去九寨溝的概率和去泰山的概率;

(2)按上述方案,小明在曲線上取點作為向量的終點,則小明決定去武夷山.點在曲線上運動,若點的坐標(biāo)為,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域為BCDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路不考慮寬.

I求道路BE的長度;

求道路AB,AE長度之和的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

I求函數(shù)的單調(diào)區(qū)間;

當(dāng)恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案