科目: 來(lái)源: 題型:
【題目】平面上兩點(diǎn)A(﹣1,0),B(1,0),在圓C:(x﹣3)2+(y﹣4)2=4上取一點(diǎn)P,
(Ⅰ)x﹣y+c≥0恒成立,求c的范圍
(Ⅱ)從x+y+1=0上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值
(Ⅲ)求|PA|2+|PB|2的最值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4x+a+3,g(x)=mx+5﹣2m
(1)當(dāng)a=﹣3,m=0時(shí),求方程f(x)﹣g(x)=0的解;
(2)若方程f(x)=0在[﹣1,1]上有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)滿足:
①對(duì)任意實(shí)數(shù)m,n都有f(m+n)+f(m﹣n)=2f(m)f(n);
②對(duì)任意m∈R,都有f(1+m)=f(1﹣m)恒成立;
③f(x)不恒為0,且當(dāng)0<x<1時(shí),f(x)<1.
(1)求f(0),f(1)的值;
(2)判斷函數(shù)f(x)的奇偶性,并給出你的證明;
(3)定義:“若存在非零常數(shù)T,使得對(duì)函數(shù)g(x)定義域中的任意一個(gè)x,均有g(shù)(x+T)=g(x),則稱g(x)為以T為周期的周期函數(shù)”.試證明:函數(shù)f(x)為周期函數(shù),并求出 的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分別是AC1和BB1的中點(diǎn),則直線DE與平面BB1C1C所成的角為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知集合M={f(x)|f2(x)﹣f2(y)=f(x+y)f(x﹣y),x,y∈R},有下列命題
①若f(x)= ,則f(x)∈M;
②若f(x)=2x,則f(x)∈M;
③f(x)∈M,則y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;
④f(x)∈M,則對(duì)于任意實(shí)數(shù)x1 , x2(x1≠x2),總有 <0成立;
其中所有正確命題的序號(hào)是 . (寫(xiě)出所有正確命題的序號(hào))
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,經(jīng)過(guò)點(diǎn) 且斜率為k的直線l與橢圓 有兩個(gè)不同的交點(diǎn)P和Q.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)橢圓與x軸正半軸、y軸正半軸的交點(diǎn)分別為A,B,是否存在常數(shù)k,使得向量 與 共線?如果存在,求k值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知集合U={x|x是小于6的正整數(shù)},A={1,2},B∩(C∪A)={4},則∪(A∪B)=( )
A.{3,5}
B.{3,4}
C.{2,3}
D.{2,4}
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=( )x , 函數(shù)g(x)=log x.
(1)若g(ax2+2x+1)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈[( )t+1 , ( )t]時(shí),求函數(shù)y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負(fù)實(shí)數(shù)m,n,使得函數(shù)y=log f(x2)的定義域?yàn)閇m,n],值域?yàn)閇2m,2n],若存在,求出m,n的值;若不存在,則說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com