科目: 來源: 題型:
【題目】某城市隨機抽取一年(365天)內100天的空氣質量指數API的監(jiān)測數據,結果統計如表:
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空氣質量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(1)若某企業(yè)每天由空氣污染造成的經濟損失S(單位:元)與空氣質量指數API(記為ω)的關系式為: S= ,試估計在本年內隨機抽取一天,該天經濟損失S大于200元且不超過600元的概率;
(2)若本次抽取的樣本數據有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯表,并判斷能否有95%的把握認為該市本年空氣重度污染與供暖有關? 附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
k2=
非重度污染 | 重度污染 | 合計 | |
供暖季 | |||
非供暖季 | |||
合計 | 100 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1的各個頂點與各棱的中點共20個點中,任取2點連成直線,在這些直線中任取一條,它與對角線BD1垂直的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】[ ]表示不超過 的最大整數.若 S1=[ ]+[ ]+[ ]=3,
S2=[ ]+[ ]+[ ]+[ ]+[ ]=10,
S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=21,
…,
則Sn=( )
A.n(n+2)
B.n(n+3)
C.(n+1)2﹣1
D.n(2n+1)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數 是奇函數,f(x)=lg(10x+1)+bx是偶函數.
(1)求a和b的值.
(2)說明函數g(x)的單調性;若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實數k的取值范圍.
(3)設 ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實數a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l:ax﹣y+1=0與x軸,y軸分別交于點A,B.
(1)若a>0,點M(1,﹣1),點N(1,4),且以MN為直徑的圓過點A,求以AN為直徑的圓的方程;
(2)以線段AB為邊在第一象限作等邊三角形ABC,若a=﹣ ,且點P(m, )(m>0)滿足△ABC與△ABP的面積相等,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某電影院共有1000個座位,票價不分等次,根據影院的經營經驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入),問:
(1)把y表示為x的函數,并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數在區(qū)間上有最大值4和最小值1.設.
(1)求的值;
(2)若不等式在上有解,求實數的取值范圍;
(3)若有三個不同的實數解,求實數的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com