科目: 來源: 題型:
【題目】已知集合A={x|x2﹣3x﹣10<0},B={x|m+1≤x≤2m﹣1}.
(1)當(dāng)m=3時,求集合(UA)∩B;
(2)若A∩B=B,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1的棱長為1,給出下列四個命題: ①對角線AC1被平面A1BD和平面B1 CD1三等分;
②正方體的內(nèi)切球、與各條棱相切的球、外接球的表面積之比為1:2:3;
③以正方體的頂點為頂點的四面體的體積都是 ;
④正方體與以A為球心,1為半徑的球在該正方體內(nèi)部部分的體積之比為6:π
其中正確命題的序號為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點O為線段BD的中點,設(shè)點P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x|2a﹣x|+2x,a∈R.
(1)若a=0,判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的取值范圍;
(3)若存在實數(shù)a∈[﹣2,2],使得關(guān)于x的方程f(x)﹣tf(2a)=0有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍為( )
A.(﹣1,+∞)
B.(﹣1,1)
C.(﹣∞,1)
D.[﹣1,1]
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A為橢圓 =1(a>b>0)上的一個動點,弦AB,AC分別過左右焦點F1 , F2 , 且當(dāng)線段AF1的中點在y軸上時,cos∠F1AF2= . (Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè) ,試判斷λ1+λ2是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中點. (Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,平面內(nèi)有三個向量 , , ,其中 與 的夾角為30°, 與 的夾角為90°,且| |=2,| |=2,| |=2 ,若 =λ +μ ,(λ,μ∈R)則( )
A.λ=4,μ=2
B.λ=4,μ=1
C.λ=2,μ=1
D.λ=2,μ=2
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)f(x)= ﹣ ,若規(guī)定<x>表示不小于x的最小整數(shù),則函數(shù)y=<f(x)>的值域是( )
A.{0,1}
B.{0,﹣1}
C.{﹣1,1}
D.{﹣1,0,1}
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}滿足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn= .
(1)求數(shù)列{bn}的通項公式;
(2)求數(shù)列{bn3n}的前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com