相關習題
 0  265944  265952  265958  265962  265968  265970  265974  265980  265982  265988  265994  265998  266000  266004  266010  266012  266018  266022  266024  266028  266030  266034  266036  266038  266039  266040  266042  266043  266044  266046  266048  266052  266054  266058  266060  266064  266070  266072  266078  266082  266084  266088  266094  266100  266102  266108  266112  266114  266120  266124  266130  266138  266669 

科目: 來源: 題型:

【題目】某校要在一條水泥路邊安裝路燈,其中燈桿的設計如圖所示,AB為地面,CD,CE為路燈燈桿,CDAB,∠DCE=,在E處安裝路燈,且路燈的照明張角∠MEN=.已知CD=4mCE=2m.

(1)M,D重合時,求路燈在路面的照明寬度MN;

(2)求此路燈在路面上的照明寬度MN的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某登山隊在山腳處測得山頂的仰角為,沿傾斜角為(其中)的斜坡前進后到達處,休息后繼續(xù)行駛到達山頂

1)求山的高度;

2)現(xiàn)山頂處有一塔.從的登山途中,隊員在點處測得塔的視角為.若點處高度,則為何值時,視角最大?

查看答案和解析>>

科目: 來源: 題型:

【題目】為美化校園,江蘇省淮陰中學將一個半圓形的邊角地改造為花園.如圖所示,O為圓心,半徑為1千米,點AB、P都在半圓弧上,設∠NOP=POA=,∠AOB=,且.

1)請用分別表示線段NABM的長度;

2)若在花園內鋪設一條參觀線路,由線段NA、ABBM三部分組成,則當取何值時,參觀線路最長?

3)若在花園內的扇形ONP和四邊形OMBA內種滿杜鵑花,則當取何值時,杜鵑花的種植總面積最大?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知A,B兩鎮(zhèn)分別位于東西湖岸MNA處和湖中小島的B處,點CA的正西方向1 km處,tanBAN,∠BCN,.現(xiàn)計劃鋪設一條電纜連通A,B兩鎮(zhèn),有兩種鋪設方案:①沿線段AB在水下鋪設;②在湖岸MN上選一點P,先沿線段AP在地下鋪設,再沿線段PB在水下鋪設,預算地下、水下的電纜鋪設費用分別為2萬元km、4萬元km.

1)求A,B兩鎮(zhèn)間的距離;

2)應該如何鋪設,使總鋪設費用最低?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在南北方向有一條公路,一半徑為100的圓形廣場(圓心為)與此公路所在直線相切于點,點為北半圓。ɑ)上的一點,過點作直線的垂線,垂足為,計劃在內(圖中陰影部分)進行綠化,設的面積為(單位:),

1)設,將表示為的函數(shù);

2)確定點的位置,使綠化面積最大,并求出最大面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某公園內有一塊以為圓心半徑為米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設計方案:如圖,在圓形區(qū)域內搭建露天舞臺,舞臺為扇形區(qū)域,其中兩個端點,分別在圓周上;觀眾席為梯形內切在圓外的區(qū)域,其中,且,在點的同側.為保證視聽效果,要求觀眾席內每一個觀眾到舞臺處的距離都不超過米.設,.問:對于任意,上述設計方案是否均能符合要求?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三個校區(qū)分別位于扇形OAB的三個頂點上,點Q是弧AB的中點,現(xiàn)欲在線段OQ上找一處開挖工作坑P(不與點O,Q重合),為小區(qū)鋪設三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長度為y千米.

(1)將y表示成θ的函數(shù),并寫出θ的范圍;

(2)請確定工作坑P的位置,使地下電纜管線的總長度最。

查看答案和解析>>

科目: 來源: 題型:

【題目】某公園要設計如圖所示的景觀窗格(其結構可以看成矩形在四個角處對稱地截去四個全等的三角形所得,如圖二中所示多邊形),整體設計方案要求:內部井字形的兩根水平橫軸米,兩根豎軸米,記景觀窗格的外框(如圖二實線部分,軸和邊框的粗細忽略不計)總長度為米.

(1)若,且兩根橫軸之間的距離為米,求景觀窗格的外框總長度;

(2)由于預算經費限制,景觀窗格的外框總長度不超過米,當景觀窗格的面積(多邊形的面積)最大時,給出此景觀窗格的設計方案中的大小與的長度.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,B,C分別是海岸線上的兩個城市兩城市間由筆直的海濱公路相連,B,C之間的距離為100km,海島A在城市B的正東方50從海島A到城市C,先乘船按北偏西θ角(,其中銳角的正切值為)航行到海岸公路P處登陸,再換乘汽車到城市C已知船速為25km/h,車速為75km/h.

(1)試建立由APC所用時間與的函數(shù)解析式

(2)試確定登陸點P的位置,使所用時間最少,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某城市小區(qū)有一個矩形休閑廣場,米,廣場的一角是半徑為米的扇形綠化區(qū)域,為了使小區(qū)居民能夠更好的在廣場休閑放松,現(xiàn)決定在廣場上安置兩排休閑椅,其中一排是穿越廣場的雙人靠背直排椅(寬度不計),點在線段上,并且與曲線相切;另一排為單人弧形椅沿曲線(寬度不計)擺放.已知雙人靠背直排椅的造價每米為元,單人弧形椅的造價每米為元,記銳角,總造價為元.

1)試將表示為的函數(shù),并寫出的取值范圍;

2)如何選取點的位置,能使總造價最。

查看答案和解析>>

同步練習冊答案