17.氡是一種放射性氣體,主要來源于不合格的水泥、墻磚、石材等建筑材料.呼吸時氡氣會隨氣體進入肺臟,氡衰變時放出α射線,這種射線像小“炸彈”一樣轟擊肺細胞,使肺細胞受損,從而引發(fā)肺癌、白血病等.若有一靜止的氡核${\;}_{86}^{222}$Rn發(fā)生α衰變,放出一個速度為v0、質量為m的α粒子和一個質量為M的反沖核釙${\;}_{84}^{218}$Po(此過程動量守恒),若氡核發(fā)生衰變時,釋放的能量全部轉化為α粒子和釙核的動能.
(1)寫出衰變方程;
(2)求出反沖核釙的速度;(計算結果用題中字母表示)
(3)求出這一衰變過程中的質量虧損.(計算結果用題中字母表示)

分析 (1)核反應過程質量數(shù)與核電荷數(shù)守恒,根據(jù)質量數(shù)與核電荷數(shù)守恒寫出核反應方程式.
(2)核反應過程動量守恒,由動量守恒定律可以求出釙的速度.
(3)根據(jù)動量守恒定律、能量守恒定律求出釋放的核能,通過愛因斯坦質能方程求出質量虧損.

解答 解:(1)由質量數(shù)和核電荷數(shù)守恒定律可知,核反應方程式為:
${\;}_{86}^{222}$Rn→${\;}_{84}^{218}$Po+${\;}_{2}^{4}$He;
(2)核反應過程動量守恒,以α離子的速度方向為正方向,
由動量守恒定律得:mv0+Mv=0,
解得:v=-$\frac{m{v}_{0}}{M}$,負號表示方向與α離子速度方向相反;
(3)衰變過程產(chǎn)生的能量:
△E=$\frac{1}{2}$mv02+$\frac{1}{2}$Mv2=$\frac{(M+m)m{v}_{0}^{2}}{2M}$,
由愛因斯坦質能方程得:△E=△mc2
解得:△m=$\frac{(M+m)m{v}_{0}^{2}}{2M{c}^{2}}$;
答:(1)衰變方程為:${\;}_{86}^{222}$Rn→${\;}_{84}^{218}$Po+${\;}_{2}^{4}$He;
(2)衰變生成的釙核的速度大小為:$\frac{m{v}_{0}}{M}$,方向:與α離子速度方向相反;
(3)這一衰變過程中的質量虧損為$\frac{(M+m)m{v}_{0}^{2}}{2M{c}^{2}}$.

點評 本題考查了寫核反應方程式、求離子速度、求質量虧損等問題,應用質量數(shù)與核電荷數(shù)守恒、動量守恒定律即可正確解題,先求出衰變過程釋放的能量,然后應用質能方程可以求出質量虧損.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:解答題

14.某同學用如圖甲所示的電路測量兩節(jié)干電池串聯(lián)而成的電池組的電動勢E和內(nèi)電阻r,R為電阻箱.實驗室提供的器材如下:電壓表(量程0~3V,內(nèi)阻約3kΩ),電阻箱(阻值范圍0~99.9Ω);開關、導線若干.
①請根據(jù)圖(甲)的電路圖,在圖(乙)中畫出連線,將器材連接成實驗電路;

②實驗時,改變并記錄電阻箱R的阻值,記錄對應電壓表的示數(shù)U,得到如表所示的若干組 R、U的數(shù)據(jù).根據(jù)圖(丙)所示,表中第4組對應的電阻值讀數(shù)是13.7Ω;

12345678910
電阻R/Ω60.535.220.09.95.84.33.52.92.5
電壓U/V2.582.432.222.001.781.401.181.050.930.85
③請推導$\frac{1}{U}$與$\frac{1}{R}$的函數(shù)關系式(用題中給的字母表示)$\frac{1}{U}=\frac{1}{E}+\frac{r}{ER}$,根據(jù)實驗數(shù)據(jù)繪出如圖丁所示的$\frac{1}{U}$-$\frac{1}{R}$圖線,由圖線得出電池組的電動勢E=2.86V,內(nèi)電阻r=5.80Ω.(保留三位有效數(shù)字)

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

8.如圖甲所示,一輕質彈簧左端固定于豎直擋板上,右端與質量m=0.5kg、可看作質點的物塊相接觸(不粘連),OA段粗糙且長度等于彈簧原長(其余軌道均光滑),物塊開始靜止于A點,與OA段的動摩擦因數(shù)μ=0.5,現(xiàn)對物塊施加一個大小隨向左位移x變化關系如圖乙所示的水平向左的外力F,物塊向左運動x=0.4m到B點,在B點時速度為零,隨即撤去外力F,物塊在彈簧彈力作用下向右運動,恰好能通過豎直半圓弧軌道的最高點D(水平軌道與豎直軌道相切于C點),物塊從D點拋出后恰好擊中A點,取g=10m/s2,則(  )
A.彈簧被壓縮過程中外力F所做的功為6.0J
B.彈簧具有的最大彈性勢能為6.0J
C.豎直半圓軌道半徑為0.32m
D.水平部分AC長為0.32m

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

5.如圖為兩塊水平放置的金屬板,兩板間距為d,用導線與一個n匝線圈相連,線圈電阻為R,線圈中有豎直方向的磁場,阻值也為R的電阻與金屬板連接,要使兩板間質量為m、帶負電且電荷量為-q的油滴恰好處于靜止.則線圈中的磁感應強度B的變化情況和磁通量的變化率大小分別是( 。
A.磁感應強度B豎直向上且增強,$\frac{△Φ}{△t}$=$\frac{dmg}{nq}$
B.磁感應強度B豎直向下且增強,$\frac{△Φ}{△t}$=$\frac{dmg}{nq}$
C.磁感應強度B豎直向上且減弱,$\frac{△Φ}{△t}$=2$\frac{dmg}{nq}$
D.磁感應強度B豎直向下且減弱,$\frac{△Φ}{△t}$=2$\frac{dmg}{nq}$

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

12.如圖1為“碰撞實驗器”,它可以驗證動量守恒定律,即研究兩個小球在軌道水平部分碰撞前后的動量關系.

(1)實驗中必須要求的條件是BD.
A.斜槽軌道盡量光滑以減少誤差
B.斜槽軌道末端的切線必須水平
C.入射球和被碰球的質量必須相等,且大小相同
D.入射球每次必須從軌道的同一位置由靜止釋放
(2)圖1中O點是小球拋出點在地面上的垂直投影.實驗時,先讓入射球m1多次從斜軌上S位置靜止釋放,找到其平均落地點的位置P,測量平拋射程OP.然后,把被碰小球m2靜置于軌道的水平部分,再將入射球m1從斜軌上S位置靜止釋放,與小球m2相碰,并多次重復.本實驗還需要完成的必要步驟是ACD(填選項前的符號).
A.用天平測量兩個小球的質量m1、m2
B.測量拋出點距地面的高度H
C.分別找到m1、m2相碰后平均落地點的位置M、N
D.測量平拋射程OM、ON
(3)某次實驗中得出的落點情況如圖2所示,假設碰撞過程中動量守恒,則入射小球質量m1和被碰小球質量m2之比為4:1.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

2.如圖所示,一個小孩在公園里滑滑梯.他在同一高度處分別沿兩個滑梯從靜止滑到水平地面上,假設小孩沿兩個滑梯滑下過程中受到的摩擦力大小相等,在不考慮空氣阻力的情況下,下列說法正確的是(  )
A.小孩兩次滑下過程中重力做功不相等
B.小孩兩次滑下過程中重力勢能的減少量不相等
C.小孩沿直滑梯滑下到達底端時的動能小
D.小孩沿直滑梯滑下時,機械能損失少

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

9.為了“探究動能定理”,查資料得知,彈簧的彈性勢能EP=$\frac{1}{2}$kx2,其中k時彈簧的勁度系數(shù),x是彈簧長度的變化量.某同學設想用壓縮的彈簧推靜止的小球(質量為m)運動來探究這一問題.為了研究方便,把小球放在水平桌面上做實驗,讓小球在彈力作用下運動,即只有彈簧推力做功.該同學設計實驗如下:
首先進行如圖甲所示的實驗:將輕質彈簧豎直掛起來,在彈簧的另一端掛上小球,靜止時測得彈簧的伸長量為d.
在此步驟中,目的是要確定物理量彈簧的勁度系數(shù)k,用m、d、g表示為k=$\frac{mg}mokc4jy$.
接著進行如圖乙所示的實驗:將這根彈簧水平放在桌面上,一端固定,另一端被小球壓縮,測得壓縮量為x,釋放彈簧后,小球被推出去,從高為h的水平面上拋出,小球在空中運動的水平距離為L.
根據(jù)測量數(shù)據(jù),可計算出,小球從桌面拋出時的動能Ek2=$\frac{m{gL}^{2}}{4h}$.
彈簧對小球做的功W=$\frac{m{gx}^{2}}{2d}$(用m、x、d、g表示).
小球的初動能Ek1=0,對比W和Ek2-Ek1就可以得出“動能定理”,即在實驗誤差允許的范圍內(nèi),外力所做的功等于物體動能的變化量.

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

6.一個物體從某一確定的高度以10m/s的初速度水平拋出,已知它落地時的速度為20m/s,那么此時速度與水平方向的夾角為60°,它在空中運動的時間是$\sqrt{3}$s.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

7.如圖所示電路,開始時K處于斷開狀態(tài),A1、A2、V1、V2示數(shù)分別為I1、I2、U1、U2,現(xiàn)將K閉合,下列對各表讀數(shù)的變化情況判斷正確的是( 。
A.U1減小B.U2增大C.I1增大D.I2增大

查看答案和解析>>

同步練習冊答案