2.如圖甲所示,平行板M、N關于x軸對稱,右端剛好位于y軸上,兩平行板長為2L,板間距離為L,兩板間加如圖乙所示的正弦交流電,在y軸右側有垂直于xOy平面向里的勻強磁場,在平行板左端,位于x軸上的A點有一粒子源,沿x軸正向不斷發(fā)射質量為m、帶電荷量為+q的、速度大小相同的粒子,這些粒子剛好都能進入磁場,經(jīng)磁場偏轉后剛好不能再次進入板間電場,粒子穿過兩板間所用的時間遠小于T,圖中Um為已知量,不計粒子的重力.求:

(1)勻強磁場的磁感應強度大。
(2)粒子打在y軸上的范圍.

分析 (1)粒子在有電壓時在板間是做類平拋運動,在磁場中勻速圓周運動,求出進出磁場位置之間的距離,無電壓時勻速通過后進入磁場,求出進出磁場位置間的距離,發(fā)現(xiàn)與電壓無關,結合題意,所有粒子不再進入板間電場,分析臨界軌跡即恰好從邊緣飛出的粒子,由類平拋運動求出粒子初速度,結合進出磁場位置間距離可以求出B的大。
(2)畫出軌跡,分析臨界軌跡得到電子打在y軸上的范圍.

解答 解:(1)板間電壓為0時,粒子勻速通過MN,到O沿x軸正方向進入磁場做勻速圓周運動,設初速度為${v}_{0}^{\;}$,進入磁場后運動半周
洛倫茲力提供向心力$q{v}_{0}^{\;}B=m\frac{{v}_{0}^{2}}{R}$
解得$R=\frac{m{v}_{0}^{\;}}{qB}$
粒子打在y軸上的位置距O點距離$△l=2R=\frac{2m{v}_{0}^{\;}}{qB}$
極板間加上電壓時u時,粒子通過兩極板做類平拋運動,水平方向勻速直線運動,豎直方向勻加速直線運動,設射出磁場時速度與水平方向的夾角θ,進磁場時速度為v,
由幾何關系$vcosθ={v}_{0}^{\;}$
半徑$R′=\frac{mv}{qB}$
進出磁場位置間的距離$△l′=2R′cosθ=2\frac{mv}{qB}cosθ=\frac{2m{v}_{0}^{\;}}{qB}$
當粒子粒子進入時電壓最大時,剛好從板的邊緣進入磁場,在電場中做類平拋運動
水平方向:$2L={v}_{0}^{\;}t$
粒子加速度qE=ma
$E=\frac{{U}_{m}^{\;}}{L}$
豎直方向:$\frac{L}{2}=\frac{1}{2}a{t}_{\;}^{2}$
聯(lián)立以上幾式得${v}_{0}^{\;}=\sqrt{\frac{4q{U}_{m}^{\;}}{m}}$
因為經(jīng)磁場偏轉后剛好不能再次進入板間電場,所以$△l=\frac{2m{v}_{0}^{\;}}{qB}=L$
解得$B=\frac{2m{v}_{0}^{\;}}{qL}=4\sqrt{\frac{m{U}_{m}^{\;}}{q{L}_{\;}^{2}}}$
(2)作出臨界軌跡圖如圖,由下板邊緣M進入磁場的粒子恰好打在上板邊緣N點,無電壓時射入的粒子剛好打在Q點,由上極板邊緣N進入磁場的粒子剛好打在Q點
$P(0,\frac{3L}{2})$,Q(0,L),$N(0,\frac{L}{2})$
在板間向上偏轉的粒子打在y軸上PQ之間,在板間向下偏轉的粒子打在y軸上QN之間,所以粒子打在y軸上的范圍為PN區(qū)域,總長度為L,范圍為$\frac{L}{2}≤y≤\frac{3L}{2}$
答:(1)勻強磁場的磁感應強度大小$4\sqrt{\frac{m{U}_{m}^{\;}}{q{L}_{\;}^{2}}}$;
(2)粒子打在y軸上的范圍$\frac{L}{2}≤y≤\frac{3L}{2}$.

點評 本題是帶電粒子在交變電場和勻強磁場中運動的問題,在電場中仍然利用類平拋的規(guī)律,在磁場中勻速圓周運動,洛倫茲力充當向心力,本題關鍵是畫出臨界軌跡,結合數(shù)學知識求解.第一問可以得出結論:離開偏轉電場的粒子進、出磁場的位置之間的距離與偏轉電壓無關.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:實驗題

12.某同學用如圖甲所示的裝置測滑塊與長木板間的動摩擦因數(shù),將木板水平固定在桌面上,木板左端固定擋板上連接一輕彈簧,長木板上A、B兩點安裝有光電門,滑塊放在長木板上,靠近輕彈簧.

(1)用游標卡尺測出擋光片的寬度,讀數(shù)如圖乙所示.則擋光片的寬度d=2.60mm.
(2)在滑塊上裝上擋光片,用手推動滑塊向左移動壓縮彈簧,將彈簧壓縮到適當?shù)某潭人墒郑瑝K在彈簧彈力的作用下向右滑去,滑塊離開彈簧后分別通過A、B兩點的光電門,與光電門相連的計時器分別記錄下滑塊上擋光片通過A、B兩點光電門的時間△t1和△t2.則滑塊通過A點的速度為$\fracndfddp5{{△t}_{1}}$,通過B點的速度為$\fracprb3bnx{△{t}_{2}}$.(用物理量的字母表示)
(3)通過改變物塊壓縮彈簧的程度大小進行多次實驗,測出多組滑塊通過A點和B點的速度vA和vB,作出vA2-vB2圖象,若圖象與vA2軸的交點為a,重力加速度為g,要求出動摩擦因數(shù),還需要測出AB間的距離,若此需要測出的物理量用x表示,則物塊與長木板間的動摩擦因數(shù)為$\frac{a}{2gx}$.(用題中給出的字母表示)

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

13.下面的實例中,機械能守恒的是(  )
A.物體在粗糙的地面上滑行
B.拉著物體沿光滑的斜面勻速上升
C.跳傘運動員張開傘后,在空中勻速下降
D.鉛球從手中拋出后的運動

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

10.如圖所示,一光滑斜面固定在水平地面上,小球a從斜面頂端由靜止開始沿斜面滑下,與小球a質量相等的小球b從斜面頂端以一定的初速度水平拋出,兩球從斜面頂端運動到地面的過程中( 。
A.兩球運動時間相等B.兩球著地時速度大小相等
C.外力對兩球做功相等D.重力對兩球做功的平均功率相等

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

17.為了測出電源的電動勢和內阻,除待測電源和開關、導線以外,配合下列哪組儀器,不能達到實驗目的( 。
A.一個電流表和一個電阻箱
B.一個電壓表、一個電流表和一個滑動變阻器
C.一個電壓表和一個電阻箱
D.一個電流表和一個變阻器

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

7.向心力是使物體產(chǎn)生向心加速度的力,方向總指向圓心,時刻變化(變力),大小由牛頓第二定律可得:F=ma=$\frac{m{v}^{2}}{r}$=mω2r=$\frac{m•4{π}^{2}r}{{T}^{2}}$.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

14.質量為m的物體從地面上方H高處無初速度釋放,落在沙地上出現(xiàn)一個深為h的坑,如圖所示,則在整個過程中( 。
A.重力對物體做功為mgHB.物體的重力勢能減少了mg(h+H)
C.力對物體做的總功不為零D.阻力所做的功為mgh

查看答案和解析>>

科目:高中物理 來源: 題型:實驗題

11.在測量電源的電動勢和內阻的實驗中,實驗室提供的器材如下:
A.待測電源(電動勢約為8V、內阻約為 2Ω)
B.電壓表V(0-3V,內阻約為3kΩ)
C.電流表A(0-1A)
D.電阻箱R(0-99999.9Ω)
E.滑動變阻器(0-20Ω)
F.滑動變阻器(0-100Ω)
G.開關、導線若干

(1)采用圖甲所示電路測量電壓表的內阻RV.調節(jié)電阻箱R,使電壓表指針滿偏,此時電阻箱示數(shù)為R1;再調節(jié)電阻箱R,使電壓表指針指在滿刻度的一半處,此時電阻箱示數(shù)為R2,忽略電源的內阻.
①電壓表內阻RV=R2-2R1;
②關于上述實驗,下列說法中正確的有AD;
A.實驗中電源可使用待測電源
B.閉合開關S前,應將電阻箱阻值調到最小
C.調節(jié)電壓表滿偏時,電阻箱的阻值是逐漸增大的
D.實驗中忽略了電源的內阻,會使測量值偏大
(2)若測得電壓表內阻RV=3010Ω,與之串聯(lián)R=6020Ω的電阻,將電壓表的量程變?yōu)?V;
(3)為測量電源的電動勢和內阻,請用筆畫線代替導線,將圖乙電路連接完整.實驗中,滑動變阻器應選擇E(選填“E”或“F”),并指出產(chǎn)生實驗誤差的一個原因(寫出一點):電壓表分流.

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

12.如圖1所示,水平轉盤可繞豎直中心軸轉動,盤上疊放著質量均為1kg的A、B兩個物塊,B物塊用長為0.25m的細線與固定在轉盤中心處的力傳感器相連,兩個物塊和傳感器的大小均可不計.細線能承受的最大拉力為8N,A、B間的動摩擦因數(shù)為0.4,B與轉盤間的動摩擦因數(shù)為0.1,且可認為最大靜摩擦力等于滑動摩擦力.轉盤靜止時,細線剛好伸直,傳感器的讀數(shù)為零.當轉盤以不同的角速度勻速轉動時,傳感器上就會顯示相應的讀數(shù)F(g=10m/s2).
(1)當B與轉盤之間的靜摩擦力達到最大值時,求F的大小和轉盤的角速度ω1;
(2)當A與B恰好分離時,求F的大小和轉盤的角速度ω2;
(3)試通過計算在如圖2坐標系中作出F-ω2圖象.

查看答案和解析>>

同步練習冊答案