在高能物理研究中,粒子加速器起著重要作用,而早期的加速器只能使帶電粒子在高壓電場(chǎng)中加速一次,因而粒子所能達(dá)到的能量受到高壓技術(shù)的限制。1930年,Earnest O. Lawrence博士提出了回旋加速器的理論,他設(shè)想用磁場(chǎng)使帶電粒子沿圓弧形軌道旋轉(zhuǎn),多次反復(fù)地通過高頻加速電場(chǎng),直至達(dá)到高能量,圖甲為他設(shè)計(jì)的回旋加速器的示意圖。它由兩個(gè)鋁制D型金屬扁盒組成,兩個(gè)D形盒正中間開有一條狹縫,兩個(gè)D型盒處在勻強(qiáng)磁場(chǎng)中并接有高頻交變電壓。圖乙為俯視圖,在D型盒上半面中心S處有一正離子源,它發(fā)出的正離子,經(jīng)狹縫電壓加速后,進(jìn)入D型盒中,在磁場(chǎng)力作用下運(yùn)動(dòng)半周,再經(jīng)狹縫電壓加速;為保證粒子每次經(jīng)過狹縫都被加速,應(yīng)設(shè)法使交變電壓的周期與粒子在狹縫及磁場(chǎng)中運(yùn)動(dòng)的周期一致。如此周而復(fù)始,最后到達(dá)D型盒的邊緣,獲得最大速度后被束流提取裝置提取。設(shè)被加速的粒子為質(zhì)子,質(zhì)子的電荷量為q,質(zhì)量為m,加速時(shí)電極間電壓大小恒為U,磁場(chǎng)的磁感應(yīng)強(qiáng)度為B,D型盒的半徑為R,狹縫之間的距離為d,質(zhì)子從離子源出發(fā)時(shí)的初速度為零,分析時(shí)不考慮相對(duì)論效應(yīng)。
(1)求質(zhì)子經(jīng)第1次加速后進(jìn)入一個(gè)D形盒中的回旋半徑與第2次加速后進(jìn)入另一個(gè)D形盒后的回旋半徑之比;
(2)若考慮質(zhì)子在狹縫中的運(yùn)動(dòng)時(shí)間,求質(zhì)子從離開離子源到被第n次加速結(jié)束時(shí)所經(jīng)歷的時(shí)間;
(3)若要提高質(zhì)子被此回旋加速器加速后的最大動(dòng)能,可采取什么措施?
(4)若使用此回旋加速器加速氘核,要想使氘核獲得與質(zhì)子相同的最大動(dòng)能,請(qǐng)你通過分析,提出一個(gè)簡(jiǎn)單可行的辦法。