15.據(jù)預測,在太陽系外發(fā)現(xiàn)了首顆“宜居”行星,其質(zhì)量約為地球質(zhì)量的6.4倍,一個在地球表面重力為700N的人在“宜居”行星表面的重力將變?yōu)?120N.該行星繞恒星A旋轉,其到恒星A的距離是地球到太陽距離的3倍,恒星A的質(zhì)量為太陽質(zhì)量的12倍.由此可推知,該行星的半徑是地球半徑的2倍,在該行星上的“一年”與在地球上的“一年”之比為3:2.

分析 (1)根據(jù)一個人地球表面與該行星表面重力之比,即可求出該行星表面與地球表面重力加速度之比.
在忽略自轉的情況下,萬有引力等于物體所受的重力,所以根據(jù)重力之比,可以該行星的半徑與地球半徑之比.
(2)行星繞恒星A做勻速圓周運動,由恒星A的萬有引力提供向心力,根據(jù)牛頓第二定律可以列式得到該行星公式周期的表達式,同理,得到地球繞太陽周期的表達式,即可求出行星與地球公式周期之比,即是在該行星上的“一年”與在地球上的“一年”之比.

解答 解:(1)在地球表面,有G=mg
在該行星表面處,有G=mg
則得,該行星表面與地球表面重力加速度之比為:
g:g=G:G=1120N:700N=1.6:1
在忽略自轉的情況下,萬有引力等于物體所受的重力得$G\frac{Mm}{{R}^{2}}=mg$
有 R2=$\frac{GM}{g}$
故$\frac{{{R}_{行}}^{2}}{{{R}_{地}}^{2}}=\frac{{M}_{行}{g}_{地}}{{M}_{地}{g}_{行}}$=$6.4×\frac{1}{1.6}$=4
所以該行星的半徑與地球半徑之比為2:1.
(2)對于行星繞恒星的運動,由恒星的萬有引力提供行星的向心力,則有$G\frac{{M}_{恒}{m}_{行}}{{r}^{2}}$=${m}_{行}\frac{4{π}^{2}}{{T}^{2}}r$
得行星公轉周期為 T=2$π\(zhòng)sqrt{\frac{{r}^{3}}{G{M}_{恒}}}$
則得:該行星公轉與地球公式周期之比為$\frac{{T}_{行}}{{T}_{地}}=\sqrt{{(\frac{{r}_{行}}{{r}_{地}})}^{3}}×\sqrt{\frac{{M}_{太}}{{M}_{A}}}$=$\frac{3}{2}$
即在該行星上的“一年”與在地球上的“一年”之比為3:2.
故答案為:2;3:2.

點評 第1題根據(jù)黃金代換式g=$\frac{GM}{{r}^{2}}$研究行星的半徑與地球半徑之比.第2題要建立行星繞恒星運動的模型,根據(jù)恒星的萬有引力提供行星的向心力,列式求解周期關系.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:多選題

11.下列哪些現(xiàn)象是為了利用物體的離心運動的(  )
A.汽車轉彎時要限制速度
B.在修筑鐵路時,轉彎處轉道的內(nèi)軌要低于外軌
C.洗衣機的脫水桶工作時
D.離心水泵工作時

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

6.硅光電池是一種太陽能電池,具有低碳環(huán)保的優(yōu)點.如圖所示,圖線a是該電池在某光照強度下路端電壓U和電流I的關系圖象(電池內(nèi)阻不是常數(shù)),圖線b是某電阻R的U-I圖象.當它們組成閉合回路時,硅光電池的內(nèi)阻可表示為( 。
A.$\frac{U_1}{I_1}$B.$\frac{U_2}{I_2}$C.$\frac{U_3}{I_3}$D.$\frac{{{U_2}-{U_1}}}{I_1}$

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

3.如圖所示,光滑斜面固定在水平面上,第一次讓小球從斜面頂端A由靜止釋放,使小球沿斜面滑到底端B;第二次將小球從斜面頂端A沿水平方向拋出,使小球剛好落在斜面底端B.比較兩次小球的運動,下列說法正確的是(  )
A.第二次小球運動經(jīng)歷時間更長
B.第一次小球運動速度變化更快
C.第二次小球到達B點的速度更大
D.兩種情況小球到達B點的速度方向相同

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

10.據(jù)英國《每日郵報》9月16日報道,英式觸式橄欖球球員赫普頓斯托爾在倫敦成功挑戰(zhàn)地鐵速度.他從“市長官邸站”下車,在下一地鐵站“景隆街站”順利登上剛下來的同一節(jié)車廂.已知地鐵列車每次停站時間(從車門打開到關閉的時間)為ta=20s,列車加速和減速階段的加速度均為a=1m/s2,運行過程的最大速度為vm=72km/h.假設列車運行過程中只做勻變速和勻速運動,兩站之間的地鐵軌道和地面道路都是平直的且長度相同,兩站間的距離約為x=400m,赫普頓斯托爾出站和進站公用時tb=30s.問:
(1)他在地面道路上奔跑的平均速度至少多大?
(2)鄭州地鐵一號線最小站間距離約為x′=1000m,地鐵列車每次停站時間時間為ta′=45s,按赫普頓斯托爾的奔跑速度,在鄭州出站和進站最短共需用時tb′=60s,列車參數(shù)和其它條件相同,試通過計算判斷,若赫普頓斯托爾同樣以上述平均速度在地面道路上奔跑,能否在這兩個車站間挑戰(zhàn)成功?

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

20.一列振幅為5cm的簡諧橫波沿x軸傳播,如圖(a)為t=0.1s時刻的波形圖,圖(b)為t=0.2s時刻的波形圖,下列說法正確的是(  )
A.t=0.1s時刻,x=0m處質(zhì)點的加速度方向沿y軸負方向
B.波的傳播速度大小為10m/s,方向沿x軸正方向
C.t=0.9s時刻,x=10m處質(zhì)點的速度不為零
D.t=0.9s時刻,x=2m處質(zhì)點與x=4m處質(zhì)點的振動速度相同

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

7.如圖甲所示,在xOy坐標平面的第一象限(包括x、y軸)內(nèi)存在磁感應強度大小為B0、方向垂直于xOy平面且隨時間做周期性變化的勻強磁場,如圖乙所示,規(guī)定垂直xOy平面向里的磁場方向為正.在y軸左側有一對豎直放置的平行金屬板M、N,兩板間的電勢差為U0.一質(zhì)量為m、電量為q的帶正電粒子(重力和空氣阻力均忽略不計),從貼近M板的中點無初速釋放,通過N板小孔后從坐標原點O以某一速度沿x軸正方向垂直射入磁場中,經(jīng)過一個磁場變化周期T0(T0未知)后到達第一象限內(nèi)的某點P,此時粒子的速度方向恰好沿x軸正方向.

(1)求粒子進入磁場作勻速圓周運動時的運動半徑;
(2)若粒子在t=0時刻從O點射入磁場中,求粒子在P點縱坐標的最大值ym及相應的磁場變化周期T0的值;
(3)若在上述(2)中,第一象限內(nèi)y=ym處平行x軸放置有一屏幕,如圖甲,磁場變化周期為上述(2)中T0,但M、N兩板間的電勢差U可以在U0<U<9U,范圍內(nèi)變化,粒子仍在t=0時刻從O點射入磁場中,求粒子可能擊中的屏幕范圍.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

4.一質(zhì)點由靜止開始沿直線運動,位移隨速度變化的圖線如圖所示,則( 。
A.質(zhì)點的運動加速度逐漸減小
B.質(zhì)點的運動加速度逐漸增大
C.圖線斜率越大,某瞬時速度對應的加速度越小
D.圖線斜率越大,某瞬時速度對應的加速度越大

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

5.為測一段粗細均勻的圓柱體新型導電材料的電阻率(如圖甲),進行了如下實驗:
①先用米尺測出其長度L,用游標卡尺測其直徑d的示數(shù)如圖乙,讀數(shù)d=15.40mm;用多用電表歐姆檔(倍率為×10)粗測其電阻R如圖丙所示,示數(shù)R=300Ω.

②再利用以下器材用伏安法盡可能精確測量其電阻:
A.量程3V的電壓表.(內(nèi)阻約為3kΩ)
B.量程為15mA的電流表(內(nèi)阻約為3Ω)
C.滑動變阻器R’:最大阻值為20Ω,額定電流為1A
D.直流電源:電壓為6V.內(nèi)阻可忽略
E.開關K,導線若干
F.待測電阻R
請你將圖(丁)中的實驗儀器連接成完整的實驗電路.
③如果實驗中電流表示數(shù)為I,電壓表示數(shù)為U,米尺測出導電材料的長度L.游標卡尺測其直徑d,則該材料的電阻率ρ=$\frac{Uπaizpvbt^{2}}{4LI}$.(用測出的物理量的符號表示)

查看答案和解析>>

同步練習冊答案