2009年高考數(shù)學(xué)難點(diǎn)突破專題輔導(dǎo)二
難點(diǎn)2 充要條件的判定
充分條件、必要條件和充要條件是重要的數(shù)學(xué)概念,主要用來(lái)區(qū)分命題的條件p和結(jié)論q之間的關(guān)系.本節(jié)主要是通過(guò)不同的知識(shí)點(diǎn)來(lái)剖析充分必要條件的意義,讓考生能準(zhǔn)確判定給定的兩個(gè)命題的充要關(guān)系.
●難點(diǎn)磁場(chǎng)
(★★★★★)已知關(guān)于x的實(shí)系數(shù)二次方程x2+ax+b=0有兩個(gè)實(shí)數(shù)根α、β,證明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要條件.
●案例探究
[例1]已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),若⌐p是⌐q的必要而不充分條件,求實(shí)數(shù)m的取值范圍.
命題意圖:本題以含絕對(duì)值的不等式及一元二次不等式的解法為考查對(duì)象,同時(shí)考查了充分必要條件及四種命題中等價(jià)命題的應(yīng)用,強(qiáng)調(diào)了知識(shí)點(diǎn)的靈活性.
知識(shí)依托:本題解題的閃光點(diǎn)是利用等價(jià)命題對(duì)題目的文字表述方式進(jìn)行轉(zhuǎn)化,使考生對(duì)充要條件的難理解變得簡(jiǎn)單明了.
錯(cuò)解分析:對(duì)四種命題以及充要條件的定義實(shí)質(zhì)理解不清晰是解此題的難點(diǎn),對(duì)否命題,學(xué)生本身存在著語(yǔ)言理解上的困難.
技巧與方法:利用等價(jià)命題先進(jìn)行命題的等價(jià)轉(zhuǎn)化,搞清晰命題中條件與結(jié)論的關(guān)系,再去解不等式,找解集間的包含關(guān)系,進(jìn)而使問(wèn)題解決.
解:由題意知:
命題:若⌐p是⌐q的必要而不充分條件的等價(jià)命題即逆否命題為:p是q的充分不必要條件.
q:x2-2x+1-m2≤0[x-(1-m)][x-(1+m)]≤0 *
∵p是q的充分不必要條件,
∴不等式|1-|≤2的解集是x2-2x+1-m2≤0(m>0)解集的子集.
又∵m>0
∴不等式*的解集為1-m≤x≤1+m
[例2]已知數(shù)列{an}的前n項(xiàng)Sn=pn+q(p≠0,p≠1),求數(shù)列{an}是等比數(shù)列的充要條件.
命題意圖:本題重點(diǎn)考查充要條件的概念及考生解答充要條件命題時(shí)的思維的嚴(yán)謹(jǐn)性.
知識(shí)依托:以等比數(shù)列的判定為主線,使本題的閃光點(diǎn)在于抓住數(shù)列前n項(xiàng)和與通項(xiàng)之間的遞推關(guān)系,嚴(yán)格利用定義去判定.
錯(cuò)解分析:因?yàn)轭}目是求的充要條件,即有充分性和必要性兩層含義,考生很容易忽視充分性的證明.
技巧與方法:由an=關(guān)系式去尋找an與an+1的比值,但同時(shí)要注意充分性的證明.
解:a1=S1=p+q.
當(dāng)n≥2時(shí),an=Sn-Sn-1=pn-1(p-1)
∵p≠0,∴p-1=p+q,∴q=-1
這是{an}為等比數(shù)列的必要條件.
下面證明q=-1是{an}為等比數(shù)列的充分條件.
當(dāng)q=-1時(shí),∴Sn=pn-1(p≠0,p≠1),a1=S1=p-1
當(dāng)n≥2時(shí),an=Sn-Sn-1=pn-pn-1=pn-1(p-1)
∴an=(p-1)pn-1 (p≠0,p≠1)
∴q=-1時(shí),數(shù)列{an}為等比數(shù)列.即數(shù)列{an}是等比數(shù)列的充要條件為q=-1.
●錦囊妙計(jì)
本難點(diǎn)所涉及的問(wèn)題及解決方法主要有:
(1)要理解“充分條件”“必要條件”的概念:當(dāng)“若p則q”形式的命題為真時(shí),就記作pq,稱p是q的充分條件,同時(shí)稱q是p的必要條件,因此判斷充分條件或必要條件就歸結(jié)為判斷命題的真假.
(2)要理解“充要條件”的概念,對(duì)于符號(hào)“”要熟悉它的各種同義詞語(yǔ):“等價(jià)于”,“當(dāng)且僅當(dāng)”,“必須并且只需”,“……,反之也真”等.
(3)數(shù)學(xué)概念的定義具有相稱性,即數(shù)學(xué)概念的定義都可以看成是充要條件,既是概念的判斷依據(jù),又是概念所具有的性質(zhì).
(4)從集合觀點(diǎn)看,若AB,則A是B的充分條件,B是A的必要條件;若A=B,則A、B互為充要條件.
(5)證明命題條件的充要性時(shí),既要證明原命題成立(即條件的充分性),又要證明它的逆命題成立(即條件的必要性).
●殲滅難點(diǎn)訓(xùn)練
一、選擇題
1.(★★★★)函數(shù)f(x)=x|x+a|+b是奇函數(shù)的充要條件是( )
A.ab=0 B.a+b=0 C.a=b D.a2+b2=0
2.(★★★★)“a=1”是函數(shù)y=cos2ax-sin2ax的最小正周期為“π”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既非充分條件也不是必要條件
二、填空題
3.(★★★★)a=3是直線ax+2y+3a=0和直線3x+(a-1)y=a-7平行且不重合的_________.
4.(★★★★)命題A:兩曲線F(x,y)=0和G(x,y)=0相交于點(diǎn)P(x0,y0),命題B:曲線F(x,y)+λG(x,y)=0(λ為常數(shù))過(guò)點(diǎn)P(x0,y0),則A是B的__________條件.
三、解答題
5.(★★★★★)設(shè)α,β是方程x2-ax+b=0的兩個(gè)實(shí)根,試分析a>2且b>1是兩根α、β均大于1的什么條件?
7.(★★★★★)已知拋物線C:y=-x2+mx-1和點(diǎn)A(3,0),B(0,3),求拋物線C與線段AB有兩個(gè)不同交點(diǎn)的充要條件.
8.(★★★★★)p:-2<m<0,0<n<1;q:關(guān)于x的方程x2+mx+n=0有2個(gè)小于1的正根,試分析p是q的什么條件.(充要條件)
難點(diǎn)磁場(chǎng)
證明:(1)充分性:由韋達(dá)定理,得|b|=|α?β|=|α|?|β|<2×2=4.
設(shè)f(x)=x2+ax+b,則f(x)的圖象是開(kāi)口向上的拋物線.
又|α|<2,|β|<2,∴f(±2)>0.
(2)必要性:
由2|a|<4+bf(±2)>0且f(x)的圖象是開(kāi)口向上的拋物線.
∴方程f(x)=0的兩根α,β同在(-2,2)內(nèi)或無(wú)實(shí)根.
∵α,β是方程f(x)=0的實(shí)根,
∴α,β同在(-2,2)內(nèi),即|α|<2且|β|<2.
殲滅難點(diǎn)訓(xùn)練
一、1.解析:若a2+b2=0,即a=b=0,此時(shí)f(-x)=(-x)|x+0|+0=-x?|x|=-(x|x+0|+b)
=-(x|x+a|+b)=-f(x).
∴a2+b2=0是f(x)為奇函數(shù)的充分條件,又若f(x)=x|x+a|+b是奇函數(shù),即f(-x)=
(-x)|(-x)+a|+b=-f(x),則必有a=b=0,即a2+b2=0.
∴a2+b2=0是f(x)為奇函數(shù)的必要條件.
答案:D
2.解析:若a=1,則y=cos2x-sin2x=cos2x,此時(shí)y的最小正周期為π.故a=1是充分條件,反過(guò)來(lái),由y=cos2ax-sin2ax=cos2ax.故函數(shù)y的最小正周期為π,則a=±1,故a=1不是必要條件.
答案:A
二、3.解析:當(dāng)a=3時(shí),直線l1:3x+2y+9=0;直線l2:3x+2y+4=0.∵l1與l2的A1∶A2=B1∶B2=1∶1,而C1∶C2=9∶4≠1,即C1≠C2,∴a=3l1∥l2.
答案:充要條件
4.解析:若P(x0,y0)是F(x,y)=0和G(x,y)=0的交點(diǎn),則F(x0,y0)+λG(x0,y0)=0,即F(x,y)+λG(x,y)=0,過(guò)P(x0,y0);反之不成立.
答案:充分不必要
三、5.解:根據(jù)韋達(dá)定理得a=α+β,b=αβ.判定的條件是p:結(jié)論是q:(注意p中a、b滿足的前提是Δ=a2-4b≥0)
(2)為證明pq,可以舉出反例:取α=4,β=,它滿足a=α+β=4+>2,b=αβ=4×=2>1,但q不成立.
綜上討論可知a>2,b>1是α>1,β>1的必要但不充分條件.
6.證明:①必要性:
設(shè){an}成等差數(shù)列,公差為d,∵{an}成等差數(shù)列.
從而bn+1-bn=a1+n?d-a1-(n-1) d=d為常數(shù).?
②充分性:
設(shè){bn}是等差數(shù)列,公差為d′,則bn=(n-1)d′?
∵bn(1+2+…+n)=a1+2a2+…+nan ①
bn-1(1+2+…+n-1)=a1+2a2+…+(n-1)an ②
∴an=,從而得an+1-an=d′為常數(shù),故{an}是等差數(shù)列.
綜上所述,數(shù)列{an}成等差數(shù)列的充要條件是數(shù)列{bn}也是等差數(shù)列.
7.解:①必要性:
由已知得,線段AB的方程為y=-x+3(0≤x≤3)
由于拋物線C和線段AB有兩個(gè)不同的交點(diǎn),
所以方程組*有兩個(gè)不同的實(shí)數(shù)解.
消元得:x2-(m+1)x+4=0(0≤x≤3)
設(shè)f(x)=x2-(m+1)x+4,則有
②充分性:
∴方程x2-(m+1)x+4=0有兩個(gè)不等的實(shí)根x1,x2,且0<x1<x2≤3,方程組*有兩組不同的實(shí)數(shù)解.
因此,拋物線y=-x2+mx-1和線段AB有兩個(gè)不同交點(diǎn)的充要條件3<m≤.
8.解:若關(guān)于x的方程x2+mx+n=0有2個(gè)小于1的正根,設(shè)為x1,x2.
則0<x1<1,0<x2<1,有0<x1+x2<2且0<x1x2<1,
綜上所述,p是q的必要不充分條件.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com