【題目】一個盒里裝有大小均勻的個小球,其中有紅色球個,編號分別為;白色球, 編號分別為, 從盒子中任取個小球假設取到任何—個小球的可能性相).

1求取出的個小球中,含有編的小球的概率;

2在取出的個小球中, 小球編大值設為,機變的分布列

【答案】12分布列見解析

【解析】

試題分析:1從盒子中任取個小球,先求出基本事件總數(shù),再求出取出的個小球中,含有編號為的小球的基本事件個數(shù),由此能求出取出的個小球中,含有編號為的小球的概率;2由題意得的可能取值為,分別求出相應的概率,由此能求出隨機變量的分布列

試題解析:1取出的個小球中,含有編為的小球 為事件,

,取出的個小球中,含有編為的小球的概率為

2 的可能取值為,

,

所以隨機變量的分布列為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】面數(shù)最少的棱柱為________棱柱,共有________個面圍成.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了適應市場需求對產(chǎn)品結構做了重大調(diào)整,調(diào)整后初期利潤增長迅速,之后增長越來越慢,若要建立恰當?shù)暮瘮?shù)模型來反映該公司調(diào)整后利潤與時間的關系,可選用

A.一次函數(shù) B.二次函數(shù) C.指數(shù)型函數(shù) D.對數(shù)型函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知均為直線,為平面,下面關于直線與平面關系的命題:

任意給定一條直線與一個平面,則平面內(nèi)必存在與垂直的直線;

內(nèi)必存在與相交的直線;

,必存在與都垂直的直線;

其中正確命題的個數(shù)為

A.0個 B.1個

C.2個 D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的是

A. 在正三棱錐中,斜高大于側棱

B. 有一條側棱垂直于底面的棱柱是直棱柱

C. 底面是正方形的棱錐是正四棱錐

D. 有一個面是多邊形,其余各面均為三角形的幾何體是棱錐

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)是奇函數(shù),函數(shù)的定義域為

1的值;

2上遞減,根據(jù)單調(diào)性的定義求實數(shù)的取值范圍;

32的條件下,若函數(shù)在區(qū)間上有且僅有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,直線,設圓的半徑為1,圓心在上.

1若圓心也在直線上,過點作圓的切線,求切線方程;

2若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級學生身體素質(zhì)體能測試的成績(百分制)分布在內(nèi),同時為了了解學生愛好數(shù)學的情況,從中隨機抽取了名學生,這名學生體能測試成績的頻率分布直方圖如圖所示,各分數(shù)段的愛好數(shù)學的人數(shù)情況如表所示.

(1)求的值;

(2)用分層抽樣的方法,從體能成績在愛好數(shù)學學生中隨機抽取6人參加某項活動,現(xiàn)從6人中隨機選取2人擔任領隊,求兩名領隊中恰有1人體能成績在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若有一個企業(yè),70%的員工年收入1萬元,25%的員工年收入3萬元5%的員工年收入11萬元,則該企業(yè)員工的年收入的平均數(shù)是________萬元中位數(shù)是________萬元,眾數(shù)是________萬元.

查看答案和解析>>

同步練習冊答案