求焦點在y軸上.曲線上一點Q(-3.m)到焦點的距離為5的拋物線的標準方程為 . 查看更多

 

題目列表(包括答案和解析)

已知雙曲線的中心在原點,離心率為2,一個焦點為F(-2,0).
(1)求雙曲線方程;
(2)設(shè)Q是雙曲線上一點,且過點F,Q的直線l與y軸交于點M,若= 2,求直線l的方程.

查看答案和解析>>

已知雙曲線x2=1.
 
(1)若一橢圓與該雙曲線共焦點,且有一交點P(2,3),求橢圓方程.
(2)設(shè)(1)中橢圓的左、右頂點分別為A、B,右焦點為F,直線l為橢圓的右準線,Nl上的一動點,且在x軸上方,直線AN與橢圓交于點M.若AMMN,求∠AMB的余弦值;
(3)設(shè)過AF、N三點的圓與y軸交于P、Q兩點,當線段PQ的中點為(0,9)時,求這個圓的方程.

查看答案和解析>>

已知雙曲線x21.

(1)若一橢圓與該雙曲線共焦點,且有一交點P(2,3),求橢圓方程.

(2)設(shè)(1)中橢圓的左、右頂點分別為A、B,右焦點為F,直線l為橢圓的右準線,Nl上的一動點,且在x軸上方,直線AN與橢圓交于點M.AMMN,求AMB的余弦值;

(3)設(shè)過A、FN三點的圓與y軸交于P、Q兩點,當線段PQ的中點為(0,9)時,求這個圓的方程.

 

查看答案和解析>>

已知雙曲線的中心在原點,離心率為2,一個焦點為F(-2,0).
(1)求雙曲線方程;
(2)設(shè)Q是雙曲線上一點,且過點F,Q的直線l與y軸交于點M,若= 2,求直線l的方程.

查看答案和解析>>

已知雙曲線x2=1.
 
(1)若一橢圓與該雙曲線共焦點,且有一交點P(2,3),求橢圓方程.
(2)設(shè)(1)中橢圓的左、右頂點分別為AB,右焦點為F,直線l為橢圓的右準線,Nl上的一動點,且在x軸上方,直線AN與橢圓交于點M.若AMMN,求∠AMB的余弦值;
(3)設(shè)過AF、N三點的圓與y軸交于P、Q兩點,當線段PQ的中點為(0,9)時,求這個圓的方程.

查看答案和解析>>


同步練習(xí)冊答案