題目列表(包括答案和解析)
設點是拋物線的焦點,是拋物線上的個不同的點().
(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得
;
(2)當時,若,
求證:;
(3) 當時,某同學對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點為,設,
分別過作拋物線的準線的垂線,垂足分別為.
由拋物線定義得到
第二問設,分別過作拋物線的準線垂線,垂足分別為.
由拋物線定義得
第三問中①取時,拋物線的焦點為,
設,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點為,設,
分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得
因為,所以,
故可取滿足條件.
(2)設,分別過作拋物線的準線垂線,垂足分別為.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線的焦點為,
設,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個當時,該逆命題的一個反例.(反例不唯一)
② 設,分別過作
拋物線的準線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則
,
而,所以.
(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)
③ 補充條件1:“點的縱坐標()滿足 ”,即:
“當時,若,且點的縱坐標()滿足,則”.此命題為真.事實上,設,
分別過作拋物線準線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補充條件2:“點與點為偶數(shù),關于軸對稱”,即:
“當時,若,且點與點為偶數(shù),關于軸對稱,則”.此命題為真.(證略)
設A是如下形式的2行3列的數(shù)表,
a |
b |
c |
d |
e |
f |
滿足性質P:a,b,c,d,e,f,且a+b+c+d+e+f=0
記為A的第i行各數(shù)之和(i=1,2), 為A的第j列各數(shù)之和(j=1,2,3)記為中的最小值。
(1)對如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數(shù)表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求的最大值
(3)對所有滿足性質P的2行3列的數(shù)表A,求的最大值。
【解析】(1)因為,,所以
(2),
因為,所以,
所以
當d=0時,取得最大值1
(3)任給滿足性質P的數(shù)表A(如圖所示)
a |
b |
c |
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個數(shù)換成它的相反數(shù),所得數(shù)表仍滿足性質P,并且,因此,不妨設,,
由得定義知,,,,
從而
所以,,由(2)知,存在滿足性質P的數(shù)表A使,故的最大值為1
【考點定位】此題作為壓軸題難度較大,考查學生分析問題解決問題的能力,考查學生嚴謹?shù)倪壿嬎季S能力
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當時單調遞減;當時單調遞增,故當時,取最小值
于是對一切恒成立,當且僅當. ①
令則
當時,單調遞增;當時,單調遞減.
故當時,取最大值.因此,當且僅當時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當時,單調遞減;當時,單調遞增.故當,即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導函數(shù)研究函數(shù)單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點 處的的切線方程;
(Ⅱ)若 對任意 恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。
第一問中,利用當時,.
因為切點為(), 則,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當時,.
,
因為切點為(), 則,
所以在點()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以恒成立,
故在上單調遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當時,在上恒成立,
故在上單調遞增,
即. ……10分
(2)當時,令,對稱軸,
則在上單調遞增,又
① 當,即時,在上恒成立,
所以在單調遞增,
即,不合題意,舍去
②當時,, 不合題意,舍去 14分
綜上所述:
(文)若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的橫、縱坐標,則點P在直線x+y=5下方的概率是________.
(理)由于電腦故障,使得隨機變量ζ的分布列中部分數(shù)據丟失(以□代替),其表如下:
請你先將丟失的數(shù)據補齊,再求隨機變量ζ的數(shù)學期望,其期望值為________.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com