5.如圖1.設(shè)P.Q為△ABC內(nèi)的兩點(diǎn).且.=+.則△ABP的面積與△ABQ的面積之比為 圖1 圖2 查看更多

 

題目列表(包括答案和解析)

一塊邊長(zhǎng)為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個(gè)全等的等腰三角形作為側(cè)面制作一個(gè)正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過(guò)此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,求y的最大值及y取最大值時(shí)的x的值;
(2)空間一動(dòng)點(diǎn)P滿足
SP
=a
SA
+b
SB
+c
SC
(a+b+c=1),在第(1)問(wèn)的條件下,求|
SP
|
的最小值,并求取得最小值時(shí)a,b,c的值;
(3)在第(1)問(wèn)的條件下,設(shè)F是CD的中點(diǎn),問(wèn)是否存在這樣的動(dòng)點(diǎn)Q,它在此棱錐的表面(包含底面ABCD)運(yùn)動(dòng),且FQ⊥AC?如果存在,計(jì)算其運(yùn)動(dòng)軌跡的長(zhǎng)度,如果不存在,說(shuō)明理由.

查看答案和解析>>

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個(gè)焦點(diǎn)在直線l:x=1上,離心率e=
1
2
.設(shè)P,Q為橢圓上不同的兩點(diǎn),且弦PQ的中點(diǎn)T在直線l上,點(diǎn)R(
1
4
,0).
(1)求橢圓的方程;
(2)試證:對(duì)于所有滿足條件的P,Q,恒有|RP|=|RQ|;
(3)試判斷△PQR能否為等邊三角形?證明你的結(jié)論.

查看答案和解析>>

如圖所示,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1F2,線段OF1、OF2的中點(diǎn)分別為B1B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;

(2)過(guò)B1作直線交橢圓于P、Q兩點(diǎn),使PB2QB2,求△PB2Q的面積.

 

查看答案和解析>>

一塊邊長(zhǎng)為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個(gè)全等的等腰三角形作為側(cè)面制作一個(gè)正四棱錐S-ABCD(底面是正方形,頂點(diǎn)在底面的射影是底面中心的四棱錐).
(1)過(guò)此棱錐的高以及一底邊中點(diǎn)F作棱錐的截面(如圖),設(shè)截面三角形面積為y,求y的最大值及y取最大值時(shí)的x的值;
(2)空間一動(dòng)點(diǎn)P滿足(a+b+c=1),在第(1)問(wèn)的條件下,求的最小值,并求取得最小值時(shí)a,b,c的值;
(3)在第(1)問(wèn)的條件下,設(shè)F是CD的中點(diǎn),問(wèn)是否存在這樣的動(dòng)點(diǎn)Q,它在此棱錐的表面(包含底面ABCD)運(yùn)動(dòng),且FQ⊥AC?如果存在,計(jì)算其運(yùn)動(dòng)軌跡的長(zhǎng)度,如果不存在,說(shuō)明理由.

查看答案和解析>>

設(shè)雙曲線(a>0,b>0)的右頂點(diǎn)為A,P是雙曲線上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),從A引雙曲線的兩條漸近線的平行線與直線OP分別交于QR兩點(diǎn).(如圖)

(1)證明無(wú)論P點(diǎn)在什么位置,總有||2=|·|(O為坐標(biāo)原點(diǎn));

(2)若以OP為邊長(zhǎng)的正方形面積等于以雙曲線實(shí)、虛軸長(zhǎng)為邊長(zhǎng)的矩形的面積,求雙曲線離心率的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案