題目列表(包括答案和解析)
(14分)已知圓過(guò)點(diǎn)且與圓M:關(guān)于直線對(duì)稱
(1)判斷圓與圓M的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)作兩條相異直線分別與圓相交于、
①若直線與直線互相垂直,求的最大值;
②若直線與直線與軸分別交于、,且,為坐標(biāo)原點(diǎn),試判斷直線與是否平行?請(qǐng)說(shuō)明理由.
3 |
3 |
2 |
2 |
(12分)已知圓關(guān)于直線對(duì)稱,圓心在第二象限,半徑為。
⑴求圓C的方程;
⑵已知不過(guò)原點(diǎn)的直線與圓C相切,且在軸、軸上的截距相等,求直線的方程。
一、選擇題:
1.C 2.D 3.C 4.D 5.C 6.A 7.A 8.D 9.D 10.B
二、填空題:
11. 12. 13. 14.7 15. 16. 17.
18. 答案不惟一,如,或等 19. 60 20. 21.
22. 23. 24.
三、解答題:
25 解: (Ⅰ)因?yàn)?sub>,∴,則
∴
(Ⅱ)由,得,∴
則
由正弦定理,得,∴的面積為
26解:(Ⅰ)因?yàn)?sub>,,且,
所以
又,所以四邊形為平行四邊形,則
而,故點(diǎn)的位置滿足
(Ⅱ)證: 因?yàn)閭?cè)面底面,,且,
所以,則
又,且,所以
而,所以
27解:(Ⅰ)因?yàn)?sub>,所以的面積為()
設(shè)正方形的邊長(zhǎng)為,則由,得,
解得,則
所以,則
(Ⅱ)因?yàn)?sub>,所以
當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).所以當(dāng)長(zhǎng)為時(shí),有最小值1
28解:(Ⅰ)設(shè)圓心,則,解得
則圓的方程為,將點(diǎn)的坐標(biāo)代入得,故圓的方程為
(Ⅱ)設(shè),則,且
==,
所以的最小值為(可由線性規(guī)劃或三角代換求得)
(Ⅲ)由題意知, 直線和直線的斜率存在,且互為相反數(shù),故可設(shè),
,由,
得
因?yàn)辄c(diǎn)的橫坐標(biāo)一定是該方程的解,故可得
同理,,
所以=
所以,直線和一定平行
29解:(Ⅰ)因?yàn)?sub>
由;由,
所以在上遞增,在上遞減
欲在上為單調(diào)函數(shù),則
(Ⅱ)證:因?yàn)?sub>在上遞增,在上遞減,
所以在處取得極小值
又,所以在上的最小值為
從而當(dāng)時(shí),,即
(Ⅲ)證:因?yàn)?sub>,所以即為,
令,從而問題轉(zhuǎn)化為證明方程=0
在上有解,并討論解的個(gè)數(shù)
因?yàn)閣ww.tesoon.com,,
所以 ①當(dāng)時(shí),,
所以在上有解,且只有一解
②當(dāng)時(shí),,但由于,
所以在上有解,且有兩解
③當(dāng)時(shí),,所以在上有且只有一解;
當(dāng)時(shí),,
所以在上也有且只有一解
綜上所述, 對(duì)于任意的,總存在,滿足,
且當(dāng)時(shí),有唯一的適合題意;
當(dāng)時(shí),有兩個(gè)適合題意
30解:(Ⅰ)由題意得,,所以=
(Ⅱ)證:令,,則=1
所以=(1),=(2),
(2)―(1),得―=,
化簡(jiǎn)得(3)
(4),(4)―(3)得
在(3)中令,得,從而為等差數(shù)列
(Ⅲ)記,公差為,則=
則,
則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com