(I)求證:數(shù)列是等比數(shù)列, 查看更多

 

題目列表(包括答案和解析)

(I)設(shè)是各項(xiàng)均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項(xiàng)得到的數(shù)列(按原來(lái)的順序)是等比數(shù)列:

①當(dāng)時(shí),求的數(shù)值;②求的所有可能值;

(II)求證:對(duì)于一個(gè)給定的正整數(shù),存在一個(gè)各項(xiàng)及公差都不為零的等差數(shù)列,其中任意三項(xiàng)(按原來(lái)的順序)都不能組成等比數(shù)列。

查看答案和解析>>

(I)設(shè)是各項(xiàng)均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項(xiàng)得到的數(shù)列(按原來(lái)的順序)是等比數(shù)列:

①當(dāng)時(shí),求的數(shù)值;②求的所有可能值;

(II)求證:對(duì)于一個(gè)給定的正整數(shù),存在一個(gè)各項(xiàng)及公差都不為零的等差數(shù)列,其中任意三項(xiàng)(按原來(lái)的順序)都不能組成等比數(shù)列。

 

查看答案和解析>>

數(shù)列{an}中,an+1=
an2
2an-2
,n∈N*
(I)若a1=
9
4
,設(shè)bn=log
1
3
an-2
an
,求證數(shù)列{bn}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(II)若a1>2,n≥2,n∈N,用數(shù)學(xué)歸納法證明:2<an<2+
a1-2
2n-1

查看答案和解析>>

數(shù)列an的首項(xiàng)為a(a>0),它的前n項(xiàng)的和是Sn
(1)若數(shù)列an是等差數(shù)列,公差為d,d≠0,且數(shù)列
Sn
an
也是等差數(shù)列,①求d;②求證:∑i=1n
2Si 
a
n2+2n
2

(2)數(shù)列Sn是公比為q的等比數(shù)列,且q≠1,不等式Sn.≥kan對(duì)任意正整數(shù)n都成立,求k的值或k的取值范圍.

查看答案和解析>>

數(shù)列{an}中,an+1=
an2
2an-2
,n∈N*
(I)若a1=
9
4
,設(shè)bn=log
1
3
an-2
an
,求證數(shù)列{bn}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(II)若a1>2,n≥2,n∈N,用數(shù)學(xué)歸納法證明:2<an<2+
a1-2
2n-1

查看答案和解析>>


同步練習(xí)冊(cè)答案