難點:加法原理.乘法原理的區(qū)分.解決方法:運用對比的方法比較它們的異同.三.活動設計 查看更多

 

題目列表(包括答案和解析)

小明和同桌小聰在課后做作業(yè)時,對課本中的一道作業(yè)題,進行了認真探索.

【作業(yè)題】如圖1,一個半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測得圓周角∠C=45°,求橋AB的長.

小明和小聰經過交流,得到了如下的兩種解決方法:

方法一:延長BO交⊙O與點E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=;

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=

感悟:圓內接三角形的一邊和這邊的對銳角、圓的半徑(或直徑)這三者關系,可構成直角三角形,從而把一邊和這邊的對銳角﹑半徑建立一個關系式.

(1)問題解決:受到(1)的啟發(fā),請你解下面命題:如圖2,點A(3,0)、B(0,),C為直線AB上一點,過A、O、C的⊙E的半徑為2.求線段OC的長.

(2)問題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F,連結EF, 設⊙O半徑為x, EF為y.①y關于x的函數關系式;②求線段EF長度的最小值.

 

 

查看答案和解析>>

小明和同桌小聰在課后做作業(yè)時,對課本中的一道作業(yè)題,進行了認真探索。

【作業(yè)題】如圖1,一個半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測得圓周角∠C=45°,求橋AB的長。

小明和小聰經過交流,得到了如下的兩種解決方法:

方法一:延長BO交⊙O與點E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=100;

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=50

∴AB=100。

感悟:圓內接三角形的一邊和這邊的對銳角、圓的半徑(或直徑)這三者關系,

可構成直角三角形,從而把一邊和這邊的對銳角﹑半徑建立一個關系式。

(1)問題解決:受到(1)的啟發(fā),請你解下面命題:如圖2,點A(3,0)、B(0,),C為直線AB上一點,過A、O、C的⊙E的半徑為2. 求線段OC的長。

(2)問題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=2,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F,連結EF, 設⊙O半徑為x, EF為y.

①     y關于x的函數關系式;②求線段EF長度的最小值。

查看答案和解析>>

如圖,是小孔成像原理的示意圖,根據圖中標注的尺寸,如果物體AB的高度為36cm,那么它在暗盒中所成的像CD的高度應為( 。

查看答案和解析>>

對于有理數a、b,定義運算“?”,a?b=2ab-a-b+3.
(1)計算(-2)?3的值;
(2)填空:4?(-2)
=
=
(-2)?4(填“>”“=”或“<”);
(3)我們知道:有理數的加法運算和乘法運算滿足交換律.那么,由(2)計算的結果,你認為這種運算“?”是否滿足交換律?請說明理由.

查看答案和解析>>

對于有理數a,b,定義運算:“?”,a?b=a•b-a-b-2.
(1)計算(-1)?2013的值;
(2)填空:4?(-2)
=
=
(-2)?4(填“>”或“=”或“<”);
(3)我們知道:有理數的加法運算和乘法運算滿足交換律,由(2)計算的結果,你認為“?運算”是否滿足交換律?請說明理由.

查看答案和解析>>


同步練習冊答案