(Ⅱ) 求的面積. 查看更多

 

題目列表(包括答案和解析)

ABC的面積S滿(mǎn)足
3
≤S≤3,且
AB
BC
=6,AB與BC的夾角為θ.
(1)求θ的取值范圍.
(2)求函數(shù)f(θ)=sin2θ+2sinθcosθ+3cos2θ的最小值.

查看答案和解析>>

△ABC的面積是30,內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別為a,b,c,cosA=
12
13

(Ⅰ)求
AB
AC
;
(Ⅱ)若c-b=1,求a的值.

查看答案和解析>>

△ABC的面積是4,角A,B,C的對(duì)邊分別是a,b,c,b=2,cosA=
3
5

(1)求cos2
A
2
+cos2A+
1
2
的值;
(2)分別求c,a的值.

查看答案和解析>>

△ABC的面積為S,三邊長(zhǎng)為a、b、c.
(1)求證:(a+b+c)2<4(ab+bc+ca)
(2)若S=(a+b)2-c2,a+b=4,求S的最大值.
(3)試比較a2+b2+c24
3
S
的大小.

查看答案和解析>>

ABC的面積S滿(mǎn)足數(shù)學(xué)公式≤S≤3,且數(shù)學(xué)公式數(shù)學(xué)公式=6,AB與BC的夾角為θ.
(1)求θ的取值范圍.
(2)求函數(shù)f(θ)=sin2θ+2sinθcosθ+3cos2θ的最小值.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

1.  A      2. B       3. C       4. A         5.B

6.  D      7. A       8. C       9. D         10.C

 

二、填空題:本大題共4小題,每小題4分,共16分.

11.       12.   13.24     14.

15.168              16.①②③      17.1:(-6):5:(-8)

 

三、解答題:本大題共6小題,共74分.

18.解:(Ⅰ)由

                                         ---------4分

,得

,即為鈍角,故為銳角,且

.                                     ---------8分

(Ⅱ)設(shè),

由余弦定理得

解得

.                        ---------14分

19.解:(1)      --------4分

(2)x可能取的所有值有2,3,4                           --------5分

      

                    --------8分

∴x的分布列為:

∴Ex=                    --------10分

(3)當(dāng)時(shí),取出的3張卡片上的數(shù)字為1,2,2或1,2,3

當(dāng)取出的卡片上的數(shù)字為1,2,2或1,2,3的概率為,

                            --------14分

 

20.解:(Ⅰ)EF⊥DN,EF⊥BN,

∴EF⊥平面BDN,

∴平面BDN⊥平面BCEF,

又因?yàn)锽N為平面BDN與平面BCEF的交線(xiàn),

∴D在平面BCEF上的射影在直線(xiàn)BN上

而D在平面BCEF上的射影在BC上,

∴D在平面BCEF上的射影即為點(diǎn)B,即BD⊥平面BCEF.   --------4分

(Ⅱ)法一.如圖,建立空間直角坐標(biāo)系,

∵在原圖中AB=6,∠DAB=60°,

則BN=,DN=,∴折后圖中BD=3,BC=3

,

 

∴折后直線(xiàn)DN與直線(xiàn)BF所成角的余弦值為.     --------9分

法二.在線(xiàn)段BC上取點(diǎn)M,使BM=FN,則MN//BF

∴∠DNM或其補(bǔ)角為DN與BF所成角。

又MN=BF=2,    DM=,

∴折后直線(xiàn)DN與直線(xiàn)BF所成角的余弦值為。

(Ⅲ)∵AD//EF,

∴A到平面BNF的距離等于D到平面BNF的距離,

即所求三棱錐的體積為.               --------14分

21.解:(Ⅰ)(?)由已知可得

則所求橢圓方程.          --------3分

(?)由已知可得動(dòng)圓圓心軌跡為拋物線(xiàn),且拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)方程為,則動(dòng)圓圓心軌跡方程為.     --------6分

 (Ⅱ)當(dāng)直線(xiàn)MN的斜率不存在時(shí),|MN|=4,

此時(shí)PQ的長(zhǎng)即為橢圓長(zhǎng)軸長(zhǎng),|PQ|=4,

從而.            --------8分

設(shè)直線(xiàn)的斜率為,則,直線(xiàn)的方程為:

直線(xiàn)PQ的方程為,

設(shè)

,消去可得

由拋物線(xiàn)定義可知:

 ----10分

,消去,

從而,             --------12分

,

∵k>0,則

所以                       --------14分

所以四邊形面積的最小值為8.                    --------15分

22.解:(Ⅰ)

的極值點(diǎn),∴

.

又當(dāng)時(shí),,從而的極值點(diǎn)成立。

                                                  --------4分

(Ⅱ)因?yàn)?sub>上為增函數(shù),

所以上恒成立.    --------6分

,則,

上為增函數(shù)不成立;

,由對(duì)恒成立知

所以對(duì)上恒成立。

,其對(duì)稱(chēng)軸為,

因?yàn)?sub>,所以,從而上為增函數(shù)。

所以只要即可,即

所以

又因?yàn)?sub>,所以.                    --------10分

(Ⅲ)若時(shí),方程

可得

上有解

即求函數(shù)的值域.

法一:

∴當(dāng)時(shí),,從而在(0,1)上為增函數(shù);

當(dāng)時(shí),,從而在(1,+∞)上為減函數(shù)。

,而可以無(wú)窮小。

的取值范圍為.                               --------15分

法二:

當(dāng)時(shí),,所以上遞增;

當(dāng)時(shí),,所以上遞減;

,∴令,.

∴當(dāng)時(shí),,所以上遞減;

當(dāng)時(shí),,所以上遞增;

當(dāng)時(shí),,所以上遞減;

又當(dāng)時(shí),,

當(dāng)時(shí), ,則,且

所以的取值范圍為.                              --------15

 


同步練習(xí)冊(cè)答案