A.= B.=4n C.= D.= 查看更多

 

題目列表(包括答案和解析)

觀察如圖中各正方形圖案,第個(gè)圖案中圓點(diǎn)的總數(shù)是.按此規(guī)律推斷出的關(guān)系式為(   )

 

 

 

 

 


A.=       B.=4n          C.=       D.=

 

查看答案和解析>>

等比數(shù)列{an}中,a1=1,公比q≠1,若a2,a3,a4分別是某等差數(shù)列的第5項(xiàng)、第3項(xiàng)、第2項(xiàng),則an=( )
A.
B.4n-1
C.
D.2n-1

查看答案和解析>>

觀察如圖中各正方形圖案,第個(gè)圖案中圓點(diǎn)的總數(shù)是.按此規(guī)律推斷出的關(guān)系式為(  )

 
A.=B.="4n"C.=D.=

查看答案和解析>>

已知對(duì)任意的x>0恒有a1nx≤b(x-1)成立.
(1)求正數(shù)a與b的關(guān)系;
(2)若a=1,設(shè)f(x)=m
x
+n,(m,n∈R),若1nx≤f(x)≤b(x-1)對(duì)?x>0恒成立,求函數(shù)f(x)的解析式;
(3)證明:1n(n!)>2n-4
n
(n∈N,n≥2)

查看答案和解析>>

16、給出下列四個(gè)命題:
①已知集合A⊆{1,2,3,4},且A中至少含有一個(gè)奇數(shù),則這樣的集合A有12個(gè);
②任意的三角形ABC中,有cos2A<cos2B的充要條件是A>B;
③平面上n個(gè)圓最多將平面分成2n2-4n+4個(gè)部分;
④空間中直角在一個(gè)平面上的正投影可以是鈍角;
其中真命題的序號(hào)是
①②
(要求寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

一、選擇題

1-5  D D B B  D      6-10  D D C A   B

二、填空題

11、     12、13、  

14、=___5___;當(dāng)n>4時(shí),    15。12種

三、解答題

16、(1)由條件--------- (6′)

(2)z1+z2=(m2+3)+(m2-1)i--------- (8′) |z1+z2|=-----(10′)

=,|z1+z2|min=--------- (12′)

17、解:由 得,所以      ----------4分

故面積S=       ---------------------7分

    ------------------10分

18、解: ----------------------3分

 ---------------- 7分

,得:---------------10分

     所以展開(kāi)式中的常數(shù)項(xiàng)為:。----------------------11分

19、解:(Ⅰ)由的圖象經(jīng)過(guò)P(0,2),知d=2,所以

   ----------------------2分

由在處的切線方程是,知

 ---------------------6分

故所求的解析式是  ----------------------7分

(Ⅱ)

解得  當(dāng)

當(dāng)

內(nèi)是增函數(shù),在內(nèi)是減函數(shù),

內(nèi)是增函數(shù). ----------------------14分

20、解:(1)3個(gè)旅游團(tuán)選擇3條不同線路的概率為:P1=  -----------------3分

       (2)恰有兩條線路沒(méi)有被選擇的概率為:P2= --------------6分

       (3)設(shè)選擇甲線路旅游團(tuán)數(shù)為ξ,則ξ=0,1,2,3  -----------------7分

       P(ξ=0)=       Pξ=1)=

       Pξ=2)=      Pξ=3)=  ------------------11分

       ∴ξ的分布列為:

ξ

0

1

2

3

                        

      

 

               ----------------------12分

∴期望Eξ=0×+1×+2×+3×= ---------------------14分

21、(1)當(dāng)時(shí),      原等式變?yōu)?/p>

 ---2分

得   ---------------------5分

  (2)因?yàn)?sub>  所以

        ----------------------7分

①當(dāng)時(shí)。左邊=,右邊

      左邊=右邊,等式成立。---------------------8分

②假設(shè)當(dāng)時(shí),等式成立,即 -------9分

那么,當(dāng)時(shí),

左邊

   右邊。-------------1`2分

故當(dāng)時(shí),等式成立。

綜上①②,當(dāng)時(shí), -------------------14分

 

 

 

 


同步練習(xí)冊(cè)答案