當(dāng)時..在上單調(diào)遞增 --7分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

 (1) 若函數(shù)上單調(diào),求的值;

(2)若函數(shù)在區(qū)間上的最大值是,求的取值范圍.

【解析】第一問,

,

第二問中,

由(1)知: 當(dāng)時, 上單調(diào)遞增  滿足條件當(dāng)時,

解: (1) ……3分

, …………….7分

(2)

由(1)知: 當(dāng)時, 上單調(diào)遞增

  滿足條件…………..10分

當(dāng)時,  

…………13分

綜上所述:

 

查看答案和解析>>

設(shè)函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當(dāng)0<a<2時,求函數(shù)在區(qū)間上的最小值.

【解析】第一問定義域為真數(shù)大于零,得到.                            

,則,所以,得到結(jié)論。

第二問中, ().

.                          

因為0<a<2,所以.令 可得

對參數(shù)討論的得到最值。

所以函數(shù)上為減函數(shù),在上為增函數(shù).

(I)定義域為.           ………………………1分

.                            

,則,所以.  ……………………3分          

因為定義域為,所以.                            

,則,所以

因為定義域為,所以.          ………………………5分

所以函數(shù)的單調(diào)遞增區(qū)間為,

單調(diào)遞減區(qū)間為.                         ………………………7分

(II) ().

.                          

因為0<a<2,所以,.令 可得.…………9分

所以函數(shù)上為減函數(shù),在上為增函數(shù).

①當(dāng),即時,            

在區(qū)間上,上為減函數(shù),在上為增函數(shù).

所以.         ………………………10分  

②當(dāng),即時,在區(qū)間上為減函數(shù).

所以.               

綜上所述,當(dāng)時,;

當(dāng)時,

 

查看答案和解析>>

(本小題16分)

探究函數(shù)的最大值,并確定取得最大值時的值.列表如下:

-0.5

-1

-1.5

-1.7

-1.9

-2

-2.1

-2.2

-2.3

-3

-8.5

-5

-4.17

-4.05

-4.005

-4

-4.005

-4.02

-4.04

-4.3

請觀察表中值隨值變化的特點,完成以下的問題.

(1)函數(shù)在區(qū)間                      上為單調(diào)遞增函數(shù).當(dāng)                時,                  .

(2)證明:函數(shù)在區(qū)間為單調(diào)遞減函數(shù).

(3)思考:函數(shù)有最大值或最小值嗎?如有,是多少?此時為何值?(直接回答結(jié)果,不需證明).

查看答案和解析>>

(本小題滿分16分)

探究函數(shù)的最大值,并確定取得最大值時的值.列表如下:

-0.5

-1

-1.5

-1.7

-1.9

-2

-2.1

-2.2

-2.3

-3

-8.5

-5

-4.17

-4.05

-4.005

-4

-4.005

-4.02

-4.04

-4.3

請觀察表中值隨值變化的特點,完成以下的問題.

函數(shù)在區(qū)間上為單調(diào)減函數(shù);

(1)函數(shù)在區(qū)間                      上為單調(diào)遞增函數(shù).當(dāng)                時,                  .

(2)證明:函數(shù)在區(qū)間為單調(diào)遞減函數(shù).

(3)思考:函數(shù)有最大值或最小值嗎?如有,是多少?此時為何值?(直接回答結(jié)果,不需證明).

查看答案和解析>>

(本小題滿分16分)

探究函數(shù)的最大值,并確定取得最大值時的值.列表如下:

-0.5

-1

-1.5

-1.7

-1.9

-2

-2.1

-2.2

-2.3

-3

-8.5

-5

-4.17

-4.05

-4.005

-4

-4.005

-4.02

-4.04

-4.3

請觀察表中值隨值變化的特點,完成以下的問題.

函數(shù)在區(qū)間上為單調(diào)減函數(shù);

(1)函數(shù)在區(qū)間                      上為單調(diào)遞增函數(shù).當(dāng)                時,                  .

(2)證明:函數(shù)在區(qū)間為單調(diào)遞減函數(shù).

(3)思考:函數(shù)有最大值或最小值嗎?如有,是多少?此時為何值?(直接回答結(jié)果,不需證明).

查看答案和解析>>


同步練習(xí)冊答案