17.已知函數求使為正值的的集合. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數f(x)=x2-1(x≥1)的圖象是C1,函數y=g(x)的圖象C2C1關于直線y=x對稱.
(1)求函數y=g(x)的解析式及定義域M;
(2)對于函數y=h(x),如果存在一個正的常數a,使得定義域A內的任意兩個不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1x2|成立,則稱函數y=h(x)為A的利普希茨Ⅰ類函數.試證明:y=g(x)是M上的利普希茨Ⅰ類函數;
(3)設A、B是曲線C2上任意不同兩點,證明:直線AB與直線y=x必相交.

查看答案和解析>>

.(本小題滿分12分)

已知以函數f(x)=mx3-x的圖象上一點N(1,n)為切點的切線傾斜角為.

(1)求m、n的值;

(2)是否存在最小的正整數k,使得不等式f(x)≤k-1995,對于x∈[-1,3]恒成立?若存在,求出最小的正整數k,否則請說明理由.

 

查看答案和解析>>

.(本小題滿分12分)
已知以函數f(x)=mx3-x的圖象上一點N(1,n)為切點的切線傾斜角為.
(1)求m、n的值;
(2)是否存在最小的正整數k,使得不等式f(x)≤k-1995,對于x∈[-1,3]恒成立?若存在,求出最小的正整數k,否則請說明理由.

查看答案和解析>>

.(本小題滿分12分)
已知以函數f(x)=mx3-x的圖象上一點N(1,n)為切點的切線傾斜角為.
(1)求m、n的值;
(2)是否存在最小的正整數k,使得不等式f(x)≤k-1995,對于x∈[-1,3]恒成立?若存在,求出最小的正整數k,否則請說明理由.

查看答案和解析>>

(本小題滿分12分)

    已知函數,其中是使函數能在

時取得最大值時的最小正整數;

   (1)求的值;

   (2)設△ABC的三邊滿足,且邊所對的角的取值集合為,當

時,求函數的值域.

查看答案和解析>>

 

一、DBBCA,CCBCD,BA

二、13、3,14、,15、x+y-2=0,16、12

三、解答題:

17.解:∵……………2分    ………4分

        

…………………………………………6分

……………………………8分

………………………………………………10分

          又   ∴………………………12分

18.解:(Ⅰ)記甲、乙、丙三臺機器在一小時需要照顧分別為事件A、B、C,……1分

則A、B、C相互獨立,

由題意得: P(AB)=P(A)?P(B)=0.05

P(AC)=P(A)?P(C)=0.1

P(BC)=P(B)?P(C)=0.125…………………………………………………………4分

解得:P(A)=0.2;P(B)=0.25;P(C)=0.5

所以, 甲、乙、丙每臺機器在這個小時內需要照顧的概率分別是0.2、0.25、0.5……6分

   (Ⅱ)∵A、B、C相互獨立,∴相互獨立,……………………………………7分

∴甲、乙、丙每臺機器在這個小時內需都不需要照顧的概率為

…………………………10分

∴這個小時內至少有一臺需要照顧的概率為

……12分

19.證明:(Ⅰ)作AD的中點O,則VO⊥底面

ABCD.…………………………1分

建立如圖空間直角坐標系,并設正方形邊長為1,…………………………2分

則A(,0,0),B(,1,0),C(-,1,0),D(-,0,0),V(0,0,),

∴………………………………3分

由……………………………………4分

……………………………………5分

又AB∩AV=A  ∴AB⊥平面VAD…………………………………………6分

   (Ⅱ)由(Ⅰ)得是面VAD的法向量………………………………7分

設是面VDB的法向量,則

……9分

∴,……………………………………11分

又由題意知,面VAD與面VDB所成的二面角,所以其大小為…………12分

20.解:由題意得:……………1分  即…………3分

又…………4分    又成等比數列,

∴該數列的公比為,………6分    所以………8分

又……………………………………10分

所以數列的通項為……………………………12分

21.解:設容器的高為x,容器的體積為V,……………………………………………1分

則V=(90-2x)(48-2x)x,(0<V<24)………………………………………………5分

=4x3-276x2+4320x   ∵V′=12 x2-552x+4320………………………………7分

由V′=12 x2-552x+4320=0得x1=10,x2=36

∵x<10 時,V′>0,  10<x<36時,V′<0,   x>36時,V′>0,

所以,當x=10,V有極大值V(10)=1960………………………………………10分

又V(0)=0,V(24)=0,………………………………………………………………11分

所以當x=10,V有最大值V(10)=1960……………………………………………12分

22.解:(Ⅰ)∵拋物線,即,

∴焦點為………………………………………………………1分

(1)直線的斜率不存在時,顯然有………………………………3分

(2)直線的斜率存在時,設為k,        截距為b

即直線:y=kx+b      由已知得:

……………5分    

……………7分   

即的斜率存在時,不可能經過焦點……………………………………8分

所以當且僅當=0時,直線經過拋物線的焦點F…………………………9分

(Ⅱ)當時,

直線的斜率顯然存在,設為:y=kx+b………………………………10分

則由(Ⅰ)得:

   ………………………11分

…………………………………………13分

所以直線的方程為,即………………14分

 

 

 


同步練習冊答案