(A) 5 (B) (C) (D) 查看更多

 

題目列表(包括答案和解析)

已知

(A)6              (B)5              (C)4              (D)2

 

查看答案和解析>>

4、5名成人帶兩個(gè)小孩排隊(duì)上山,小孩不排在一起也不排在頭尾,則不同的排法種數(shù)有( 。

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知矩陣M=(
2a
2b
)的兩^E值分別為λ1=-1和λ2=4.
(I)求實(shí)數(shù)的值;
(II )求直線x-2y-3=0在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為
x=sinα
y=2cos2α-2
,
(a為餓),曲線D的鍵標(biāo)方程為ρsin(θ-
π
4
)=-
3
2
2

(I )將曲線C的參數(shù)方程化為普通方程;
(II)判斷曲線c與曲線D的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.
(3)選修4-5:不等式選講
已知a,b為正實(shí)數(shù).
(I)求證:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的結(jié)論求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

精英家教網(wǎng)(1)如圖,在△ABC中,AB=AC,∠C=72°,⊙E過(guò)A,B兩點(diǎn)且與BC相切于點(diǎn)B,與AC交于點(diǎn)D,連接BD,若BC=
5
-1
,則AC=
 

(2)過(guò)點(diǎn)A(2,3)的直線的參數(shù)方程為
x=2+t
y=3+2t
(t為參數(shù)),若此直線與直線x-y+3=0相較于點(diǎn)B,則|AB|=
 

(3)若關(guān)于x的不等式x+|x-1|≤a無(wú)解,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量
e1
=
1
1
,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(3,0),求矩陣M.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過(guò)點(diǎn)M(3,4),傾斜角為
π
6
的直線l與圓C:
x=2+5cosθ
y=1+5sinθ
(θ為參數(shù))相交于A、B兩點(diǎn),試確定|MA|•|MB|的值.
(3)選修4-5:不等式選講
已知實(shí)數(shù)a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

查看答案和解析>>

一 選擇題

(1)B     (2)C     (3)B     (4)B     (5)D    (6)A

(7)A     (8)C     (9)D     (10)C    (11)B   (12)C

二 填空題

(13)     (14)     (15)   (16)1

三、解答題

(17)本小題主要考查指數(shù)和對(duì)數(shù)的性質(zhì)以及解方程的有關(guān)知識(shí). 滿分12分.

解:

   

    (無(wú)解). 所以

(18)本小題主要考查同角三角函數(shù)的基本關(guān)系式、二倍角公式等基礎(chǔ)知識(shí)以及三角恒等變形的能力. 滿分12分.

解:原式

因?yàn)?nbsp;

所以   原式.

因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/0b9f8cfbed50b52836de70a0a153a9a6.zip/55806/file:///E:\cooco.net.cn\docfiles\down\test\down\%25&Ovr5\0b9f8cfbed50b52836de70a0a153a9a6.zip\55806\2004年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(文史類)(老課程).files\image173.png" >為銳角,由.

所以  原式

因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/0b9f8cfbed50b52836de70a0a153a9a6.zip/55806/file:///E:\cooco.net.cn\docfiles\down\test\down\%25&Ovr5\0b9f8cfbed50b52836de70a0a153a9a6.zip\55806\2004年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(文史類)(老課程).files\image173.png" >為銳角,由

所以   原式

(19)本小題主要考查等差數(shù)列的通項(xiàng)公式,前n項(xiàng)和公式等基礎(chǔ)知識(shí),根據(jù)已知條件列方程以及運(yùn)算能力.滿分12分.

解:設(shè)等差數(shù)列的公差為d,由及已知條件得

, ①

     ②

由②得,代入①有

解得    當(dāng)舍去.

因此 

故數(shù)列的通項(xiàng)公式

(20)本小題主要考查把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,應(yīng)用不等式等基礎(chǔ)知識(shí)和方法解決問(wèn)題的能力. 滿分12分.

解:設(shè)矩形溫室的左側(cè)邊長(zhǎng)為a m,后側(cè)邊長(zhǎng)為b m,則

        蔬菜的種植面積

       

         

        所以

        當(dāng)

        答:當(dāng)矩形溫室的左側(cè)邊長(zhǎng)為40m,后側(cè)邊長(zhǎng)為20m時(shí),蔬菜的種植面積最大,最大種植面積為648m2.

(21)本小題主要考查兩個(gè)平面垂直的性質(zhì)、二面角等有關(guān)知識(shí),以有邏輯思維能力和空間想象能力. 滿分12分.

E

     因?yàn)镻A=PC,所以PD⊥AC,

 又已知面PAC⊥面ABC,

            D

             因?yàn)镻A=PB=PC,

             所以DA=DB=DC,可知AC為△ABC外接圓直徑,

             因此AB⊥BC.

            (2)解:因?yàn)锳B=BC,D為AC中點(diǎn),所以BD⊥AC.

                  又面PAC⊥面ABC,

                  所以BD⊥平面PAC,D為垂足.

                  作BE⊥PC于E,連結(jié)DE,

                  因?yàn)镈E為BE在平面PAC內(nèi)的射影,

                  所以DE⊥PC,∠BED為所求二面角的平面角.

                  在Rt△ABC中,AB=BC=,所以BD=.

                  在Rt△PDC中,PC=3,DC=,PD=,

                  所以

                  因此,在Rt△BDE中,

                  ,

                  所以側(cè)面PBC與側(cè)面PAC所成的二面角為60°.

            (22)本小題主要考查直線和橢圓的基本知識(shí),以及綜合分析和解題能力. 滿分14分.

            解:(1)由題設(shè)有

            設(shè)點(diǎn)P的坐標(biāo)為(),由,得,

            化簡(jiǎn)得       ①

            將①與聯(lián)立,解得 

            所以m的取值范圍是.

            (2)準(zhǔn)線L的方程為設(shè)點(diǎn)Q的坐標(biāo)為,則

               ②

            代入②,化簡(jiǎn)得

            由題設(shè),得 ,無(wú)解.

            代入②,化簡(jiǎn)得

            由題設(shè),得

            解得m=2.

            從而得到PF2的方程


            同步練習(xí)冊(cè)答案