9.函數(shù)f(x)=ax 在[1, 2]中的最大值比最小值大, 則a的值為 . 查看更多

 

題目列表(包括答案和解析)

已知:函數(shù)f(x)=ax+
b
x
+c
(a、b、c是常數(shù))是奇函數(shù),且滿足f(1)=
5
2
,f(2)=
17
4
,
(Ⅰ)求a、b、c的值;
(Ⅱ)試判斷函數(shù)f(x)在區(qū)間(0,
1
2
)
上的單調(diào)性并證明.

查看答案和解析>>

已知函數(shù)f(x)=
ax+2
x+b
,a,b∈R
,若函數(shù)f(x)圖象經(jīng)點(diǎn)(0,2),且圖象關(guān)于點(diǎn)(-1,1)成中心對(duì)稱(chēng).
(1)求實(shí)數(shù)a,b的值;
(2)若數(shù)列{an}滿足:a1=2,an+1=
2
f(an)-1
(n≥1,n∈N*)
,求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{bn}滿足:bn=n(an+2),數(shù)列{bn}的前項(xiàng)的和為Sn,若
Sn
(n-1)•2n
≤m
,(n≥2)恒成立,求實(shí)數(shù)m的最小值.

查看答案和解析>>

下列說(shuō)法不正確的序號(hào)是
 

(1)函數(shù)y=
ax-a-x
2
(a>0,a≠1)是奇函數(shù);
(2)函數(shù)f(x)=
(ax+1)x
ax-1
(a>0,a≠1)是偶函數(shù);
(3)若f(x)=3x,則f(x+y)=f(x)f(y);
(4)若f(x)=ax(a>0,a≠1),且x1≠x2,則
1
2
[f(x1)+f(x2)]<f(
x1+x2
2
)

查看答案和解析>>

(2013•牡丹江一模)《選修4-5:不等式選講》
設(shè)不等式|x-2|>1的解集與關(guān)于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)=a
x-3
+b
5-x
的最大值,以及取得最大值時(shí)x的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=ax+
a+1
x
 
(a>0)
,g(x)=4-x,已知滿足f(x)=g(x)的x有且只有一個(gè).
(Ⅰ)求a的值;
(Ⅱ)若f(x)+
m
x
>1
對(duì)一切x>0恒成立,求m的取值范圍;
(Ⅲ)若函數(shù)h(x)=k-f(x)-g(x)(k∈R)在[m,n]上的值域?yàn)閇m,n](其中n>m>0),求k的取值范圍.

查看答案和解析>>

一、1. [0,2]  2. 2≤x<5或x>5  3. 4   4.   5. 720  6.   7. x(1-x)

8.(文) 2 (理)   9.  10.  11. ①②④  12. 0

二、13. A  14. D  15. A   16.C      

三、

17. 解:(1)上的奇函數(shù),。

(2)由(1)得:,即

。

 

18. 有兩個(gè)不等的負(fù)根,   …………3分

無(wú)實(shí)根, ……6分

有且只有一個(gè)為真,若p真q假,得                   ………………9分

若p假q真,得                                ………………11分

綜合上述得                        ……………………12分

19.f(x)在(-∞,-1)上是增函數(shù), f(x)在(-1,0)上是減函數(shù)。      ………………4分

證明:任取x1,x2,使x1<x2<0,則

                                ………………7分

       ∵    x1<x2<0,x2-x1>0     x1?x2>0, 當(dāng)x1<x2<-1時(shí)

       ∴   

       即   

       ∴    f(x)在(-∞,-1)上是增函數(shù)。                        ………………10分

   當(dāng)-1<x1<x2<0時(shí)

f(x2)-f(x1)<0,即f(x2)<f(x1)

∴   f(x)在(-1,0)上是減函數(shù)。                           ………………12分

20. :(1)當(dāng)a=2時(shí),A=(2,7),B=(4,5)∴ AB=(4,5).………4分

(2)∵ B=(2a,a2+1),當(dāng)a<時(shí),A=(3a+1,2)        ……………5分

要使BA,必須,此時(shí)a=-1;…………………………………7分

當(dāng)a=時(shí),A=,使BA的a不存在; ……………………………………8分

當(dāng)a>時(shí),A=(2,3a+1)                             ………………9分

要使BA,必須,此時(shí)1≤a≤3.    ………………………………11分綜上可知,使BA的實(shí)數(shù)a的取值范圍為[1,3]∪{-1}………………………12分

21、解:解:據(jù)題意,商品的價(jià)格隨時(shí)間變化,且在不同的區(qū)間上,價(jià)格隨時(shí)間的變化的關(guān)系式也不同,故應(yīng)分類(lèi)討論

設(shè)日銷(xiāo)售額為

⑴當(dāng)時(shí),

。  ………………3分

所以,當(dāng)或11時(shí),。                          ………6分

⑵當(dāng)時(shí),    …9分

所以,當(dāng)時(shí),。                                   …11分

綜合(1)、(2)知當(dāng)或11時(shí),日銷(xiāo)售額最大,最大值為176。…………12分

22、解:(1)顯然函數(shù)的值域?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/d0bc70afc2ea0d560bac0bce666e76ff.zip/55832.files/image209.gif" >;         ……………4分

(2)若函數(shù)在定義域上是減函數(shù),

則任取都有 成立,

   即只要即可,        

,故,所以

的取值范圍是;                              ……………9分

(3)當(dāng)時(shí),函數(shù)上單調(diào)增,無(wú)最小值,

 當(dāng)時(shí)取得最大值;

由(2)得當(dāng)時(shí),函數(shù)上單調(diào)減,無(wú)最大值,

當(dāng)時(shí)取得最小值

 當(dāng)時(shí),函數(shù)上單調(diào)減,在上單調(diào)增,無(wú)最大值,                                                        ……………13分

    當(dāng) 時(shí)取得最小值.                        ……………14分

 


同步練習(xí)冊(cè)答案