10.(理)已知向量a=(1,1), b=(1,0), c滿足a? c=0且|a|=|c|, b?c>0.若映射f:(x,y)→(x′,y′) =xa+yc.則在映射f下.向量的原象的模為( ). 查看更多

 

題目列表(包括答案和解析)

(理)已知向量
a
=(1,0),
b
=(0,1),向量
c
滿足(
c
+
a
)•(
c
+
b
)=0,則|
c
|的最大值是
 

查看答案和解析>>

 (理)已知向量互相垂直,則實(shí)數(shù)k的值是(    )

    A.1    B.   C.   D.

(文)對(duì)于R上可導(dǎo)的任意函數(shù)fx)滿足(x-1)f′(x)≥0,則必有   (    )

    A.f(0)+f(2)<2f(1)        B.f(0)+f(2)≤2f(1)

    C.f(0)+f(2)≥2f(1)       D.f(0)+f(2)>2f(1)

 

查看答案和解析>>

已知向量
a
=(1,1),
b
=(1,0),向量
c
滿足
a
c
=0且|
a
|=|
c
|,
b
c
>0.
(I)求向量
c
;
(Ⅱ)映射f:(x,y)→(x′,y′)=x•
a
+y•
c
,若將(x,y)看作點(diǎn)的坐標(biāo),問(wèn)是否存在直線l,使得直線l上任意一點(diǎn)P在映射f的作用下仍在直線l上?若存在,求出l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

已知向量
a
=(1,1),
b
=(1,0),向量
c
滿足
a
c
=0且|
a
|=|
c
|,
b
c
>0.
(I)求向量
c
;
(Ⅱ)映射f:(x,y)→(x′,y′)=x•
a
+y•
c
,若將(x,y)看作點(diǎn)的坐標(biāo),問(wèn)是否存在直線l,使得直線l上任意一點(diǎn)P在映射f的作用下仍在直線l上?若存在,求出l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

已知向量
e
=(1,0)
,O是坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足:|
OP
|-
OP
e
=2

(1)求動(dòng)點(diǎn)P的軌跡;
(2)設(shè)B、C是點(diǎn)P的軌跡上不同兩點(diǎn),滿足
OB
OC
(λ≠0,λ∈R)
,在x軸上是否存在點(diǎn)A(m,0),使得
AB
AC
,若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

B

C

A

B

A

C

B

理D 文B

D

理D 文C

二.填空題

13.(理)-1;(文) (-1,1)∪(2,+∞).         14. 90.

15.                                      16. (理)x+2y-3=0; (文).

三.解答題

17.  解:(I)平移以后得

,又關(guān)于對(duì)稱

, *

當(dāng)且僅當(dāng)時(shí)取最大值,

所以,取得最大值時(shí)的集合為.…………6分

(II)的最小正周期為; ,

,在[上的值域?yàn)?sub>.…………12分

18.解:(I)當(dāng)n∈N時(shí)有:=2-3n,   ∴=2-3(n+1),

兩式相減得:=2-2-3   ∴=2+3。 ……3分

+3=2(+3)。

=2-3,   ∴=3, +3=6≠0   ……4分

∴數(shù)列{+3}是首項(xiàng)6,公比為2的等比數(shù)列.從而c=3.  ……6分

 (II)由(1)知:+3=,  ∴-3.    ………8分

(Ⅲ)假設(shè)數(shù)列{}中是否存在三項(xiàng),,,(r<s<t),它們可以構(gòu)成等差數(shù)列,

<<,   ∴只能是=2,

∴(-3)+(-3)=2(-3)

.∴1+. 

 ∵r<s<t,r、s、t均為正整數(shù),∴式左邊為奇數(shù)右邊為偶數(shù),不可能成立.

因此數(shù)列{}中不存在可以構(gòu)成等差數(shù)列的三項(xiàng).  ………12分

19. (理)解:設(shè)從甲袋中取出個(gè)白球的事件為,從乙袋中取出個(gè)白球的事件為其中=0,1,2,則.

(I),,

所以………………………..6分

(II)分布列是

0

1

2

3

4

P

……………12分

(文) 19.(I)三人恰好買(mǎi)到同一只股票的概率。  ……4分

(II)解法一:三人中恰好有兩個(gè)買(mǎi)到同一只股票的概率.……9分

由(I)知,三人恰好買(mǎi)到同一只股票的概率為,所以三人中至少有兩人買(mǎi)到同一只股票的概率。  ……12分

 

20.證明:(I)因?yàn)榈酌鍭BCD是菱形,∠ABC=60°,

所以AB=AD=AC=a,  在△PAB中,

由PA2+AB2=2a2=PB2   知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD…………3分

文本框:  (II)解法一:作EG//PA交AD于G,

由PA⊥平面ABCD. 知EG⊥平面ABCD.

作GH⊥AC于H,連結(jié)EH,則EH⊥AC,∠EHG即為二面角的

平面角,設(shè)為.

又PE : ED=2 : 1,所以

從而    ……………7分

解法二:以A為坐標(biāo)原點(diǎn),直線AD、AP分別為y軸、

z軸,過(guò)A點(diǎn)垂直平面PAD的直線為x軸,建立空間直角坐標(biāo)系如圖.由題設(shè)條件,相關(guān)各點(diǎn)的坐標(biāo)分別為

所以 設(shè)二面角E-AC-D的平面角為,并設(shè)平面EAC的一個(gè)法向量是

平面ACD的一個(gè)法向量取,……………7分

(Ⅲ)解法一:設(shè)點(diǎn)F是棱PC上的點(diǎn),如上述方法建立坐標(biāo)系.

       令  , 得

解得      即 時(shí),

亦即,F(xiàn)是PC的中點(diǎn)時(shí),、共面.

又  BF平面AEC,所以當(dāng)F是棱PC的中點(diǎn)時(shí),BF//平面AEC…………12分

<strong id="7etji"><dfn id="7etji"></dfn></strong>
  1. <form id="7etji"></form>

      (證法一) 取PE的中點(diǎn)M,連結(jié)FM,則FM//CE.  ①

      由   知E是MD的中點(diǎn).

      連結(jié)BM、BD,設(shè)BDAC=O,則O為BD的中點(diǎn).

      所以  BM//OE.  ②

      由①、②知,平面BFM//平面AEC.

      又  BF平面BFM,所以BF//平面AEC.

      (證法二)因?yàn)?nbsp;

               

      所以  、共面.又 BF平面ABC,從而B(niǎo)F//平面AEC. ……12分

       

      21.解:(I)

      ,又 ,

       ,

                                       …… 4分

      (II)

      ,其過(guò)點(diǎn) 

                                           …… 7分

      (Ⅲ)由(2)知,

      、  

       

      ①當(dāng)。

      ②當(dāng)時(shí),

       

      所以直線AB的方程為                       …… 12分

      22.(理科)(Ⅰ)由已知條件代入,數(shù)形結(jié)合易知y=lnx與y=的交點(diǎn)為A(α,),y=ex與y=的交點(diǎn)為B(β,);由KAB= ―1,易知αβ=2009           …………4分

      (Ⅱ)設(shè)=,則

      , 在區(qū)間(1,)上是減函數(shù)    又∵

      ,即,

      ∴在區(qū)間(1,)上,函數(shù)圖象在函數(shù)圖象的下方         …9分

      (Ⅲ)當(dāng)時(shí),左邊=,右邊=,不等式成立;

      當(dāng)時(shí),

                   =

      由已知,  ∴

      .                  ………………………………14分

      (文科)解:(Ⅰ)當(dāng)cosθ=0時(shí),函數(shù)f(x)=4x3+在R上遞增,故無(wú)極值. …3分

      (Ⅱ)函數(shù)f、(x)=12x2-6xcosθ,令f、(x)=0,得x=0或x=cosθ

      由于0≤θ≤及(1)結(jié)論,f極小(x)=f(cosθ)=-cos3θ+>0,

      ∴0<cosθ<,而0≤θ≤,∴θ的取值范圍是(,)!7分

      (Ⅲ)f(x)在區(qū)間(2a-1,a)是增函數(shù),則或,

      由得 a≤0,又∵θ∈(,),∴要使2a-1≥恒成立,

      即要2a-1≥,即a≥,由,得≤a<1,

      ∴實(shí)數(shù)a的取值范圍是(-∞,0]∪[,1) …14分


      同步練習(xí)冊(cè)答案