某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生.并統(tǒng)計(jì)了他們的物理成績(jī)(成績(jī)均為整數(shù)且滿分為100分).把其中不低于50分的分成五段.-后畫(huà)出如下部分頻率分布直方圖.觀察圖形的信息.回答下列問(wèn)題:(1)求出物理成績(jī)低于50分的學(xué)生人數(shù),(2)估計(jì)這次考試物理學(xué)科及格率(60分及以上為及格)(3) 從物理成績(jī)不及格的學(xué)生中任選兩人.求他們成績(jī)至少有一個(gè)不低于50分的概率. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計(jì)了他們的物理成績(jī)(成績(jī)均為整數(shù)且滿分為100分),把其中不低于50分的分成五段[50,60),[60,70)…[90,100]后畫(huà)出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:
(1)求出物理成績(jī)低于50分的學(xué)生人數(shù);
(2)估計(jì)這次考試物理學(xué)科及格率(60分及以上為及格)
(3)從物理成績(jī)不及格的學(xué)生中選兩人,求他們成績(jī)至少有一個(gè)不低于50分的概率.

查看答案和解析>>

17、某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60)…[90,100]后畫(huà)出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:
(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

17、某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,畫(huà)出如下部分頻率分布直方圖.觀察圖形,回答下列問(wèn)題:
(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分以上為及格);
(3)估計(jì)這次考試的平均分.

查看答案和解析>>

精英家教網(wǎng)某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫(huà)出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:
(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)從成績(jī)是70分以上(包括70分)的學(xué)生中選兩人,求這兩人的成績(jī)?cè)赱80,90)內(nèi)的人數(shù)的分布列及期望.

查看答案和解析>>

18、某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計(jì)了他們的物理成績(jī)(成績(jī)均為整數(shù)且滿分為100分),把其中不低于50分的分成五段[50,60),[60,70)…[90,100)后畫(huà)出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:
(1)求成績(jī)?cè)赱70,80)之間的學(xué)生人數(shù)
(2)求出物理成績(jī)低于50分的學(xué)生人數(shù);
(3)估計(jì)這次考試物理學(xué)科及格率(60分及以上為及格)

查看答案和解析>>

 

1

2

3

4

5

6

7

8

2

9

充分不必要

4

①②④

9

10

11

12

13

14

 

或0

點(diǎn)P在圓內(nèi)

①②③

 

 

15.解: (1)因?yàn)楦鹘M的頻率和等于1,故低于50分的頻率為:

所以低于50分的人數(shù)為(人)………………………………………….5分

(2)依題意,成績(jī)60及以上的分?jǐn)?shù)所在的第三、四、五、六組(低于50分的為第一組),

頻率和為

所以,抽樣學(xué)生成績(jī)的合格率是%.

于是,可以估計(jì)這次考試物理學(xué)科及格率約為%……………………………………9分.

(3)“成績(jī)低于50分”及“[50,60)”的人數(shù)分別是6,9。所以從成績(jī)不及格的學(xué)生中選兩人,他們成績(jī)至少有一個(gè)不低于50分的概率為:  ……………14分

16.解:(1),

,∴

,∴.………………………………………………………………7分

(2)mn ,

|mn|

,∴,∴

從而

∴當(dāng)=1,即時(shí),|mn|取得最小值

所以,|mn|.………………………………………………………………14分

17.(1)證明:E、P分別為AC、A′C的中點(diǎn),

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………7分

(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………14分

注:直角三角形條件在證這兩問(wèn)時(shí)多余了,可直接用兩側(cè)面的直角三角形證明即可。

18.解:(1)取弦的中點(diǎn)為M,連結(jié)OM

由平面幾何知識(shí),OM=1

     得:  

∵直線過(guò)F、B ,∴     …………………………………………6分

(2)設(shè)弦的中點(diǎn)為M,連結(jié)OM

       解得     

                    …………………………………………15分

(本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

19.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第(3)問(wèn)的構(gòu)造法可直接用第二種方法,作差后用代換即可。

20.解:(1)由方程組的解為不符合題設(shè),可證。………3

(2)假設(shè)存在。

由方程組,得,即…5

設(shè)),可證:當(dāng)時(shí),單調(diào)遞減且;當(dāng)時(shí),單調(diào)遞減且。

,設(shè),則。………7

①當(dāng)時(shí),,遞增,故

于是,上單調(diào)遞減。

設(shè),則上遞增,,即,所以。………9

②當(dāng)時(shí),,遞減,故,

于是上單調(diào)遞減。

上遞減,,即,所以

由函數(shù))的性質(zhì)可知滿足題設(shè)的不存在。………11

(3)假設(shè)1,,是一個(gè)公差為的等差數(shù)列的第r、s、t項(xiàng),又是一個(gè)等比為等比數(shù)列的第r、s、t項(xiàng)。于是有:,

,

從而有, 所以

設(shè),同(2)可知滿足題設(shè)的不存在………16

注:證法太繁,在第二問(wèn)中,可用來(lái)表示,消去可得,則構(gòu)造易得到極值點(diǎn)為。

 

 

 

 

 

附加題參考答案

附1.(1)設(shè)M=,則有=,=,

所以   解得,所以M=.…………………………5分

(2)任取直線l上一點(diǎn)P(x,y)經(jīng)矩陣M變換后為點(diǎn)P’(x’,y’).

因?yàn)?sub>,所以又m:

所以直線l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………10分

附2.解:以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.

(1),,由

所以

為圓的直角坐標(biāo)方程. 

同理為圓的直角坐標(biāo)方程. ……………………………………6分

(2)由      

相減得過(guò)交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

附3.(1)設(shè)P(x,y),根據(jù)題意,得

化簡(jiǎn),得.………………………………………………………………5分

(2).……………………………………10分

附4.(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知               ………………………………4分

(2)ξ可取1,2,3,4.   ,

 ;………………8分

 故ξ的分布列為

ξ

1

2

3

4

P

                                                              

  答:ξ的數(shù)學(xué)期望為       …………10分

 

 

 


同步練習(xí)冊(cè)答案