解(1)由題意知. .-----2分 查看更多

 

題目列表(包括答案和解析)

.(本題滿分13分)設函數(shù),方程f(x)=x有唯一的解,

  已知f(xn)=xn+1(n∈N﹡)且f(xl)=

  (1)求證:數(shù)列{)是等差數(shù)列;

  (2)若,求Sn=b1+b2+b3+…+bn

  (3)在(2)的條件下,是否存在最小正整數(shù)m,使得對任意n∈N﹡,有成立,若存在,求出m的值;若不存在,請說明理由。

 

 

 

查看答案和解析>>

已知曲線相交于點A,

(1)求A點坐標;

(2)分別求它們在A點處的切線方程(寫成直線的一般式方程);

(3)求由曲線在A點處的切線及以及軸所圍成的圖形面積。(畫出草圖)

【解析】本試題主要考察了導數(shù)的幾何意義的運用,以及利用定積分求解曲邊梯形的面積的綜合試題。先確定切點,然后求解斜率,最后得到切線方程。而求解面積,要先求解交點,確定上限和下限,然后借助于微積分基本定理得到。

 

查看答案和解析>>

已知曲線相交于點A,

(1)求A點坐標;

(2)分別求它們在A點處的切線方程(寫成直線的一般式方程);

(3)求由曲線在A點處的切線及以及軸所圍成的圖形面積。(畫出草圖)

【解析】本試題主要考察了導數(shù)的幾何意義的運用,以及利用定積分求解曲邊梯形的面積的綜合試題。先確定切點,然后求解斜率,最后得到切線方程。而求解面積,要先求解交點,確定上限和下限,然后借助于微積分基本定理得到。

 

查看答案和解析>>

(本題滿分14分)

已知是函數(shù)的一個極值點,且函數(shù)的圖象在處的切線的斜率為2.

(Ⅰ)求函數(shù)的解析式并求單調(diào)區(qū)間.(5分)

(Ⅱ)設,其中,問:對于任意的,方程在區(qū)間上是否存在實數(shù)根?若存在,請確定實數(shù)根的個數(shù).若不存在,請說明理由.(9分)

 

查看答案和解析>>

 (本小題滿分14分)

已知集合是滿足下列性質(zhì)的函數(shù)的全體, 存在非零常數(shù), 對任意, 有成立.

(1) 函數(shù)是否屬于集合?說明理由;

(2) 設, 且, 已知當時, , 求當時, 的解析式.

(3)若函數(shù),求實數(shù)的取值范圍.

 

查看答案和解析>>


同步練習冊答案