拋物線的焦點(diǎn)重合.且橢圓與拋物 查看更多

 

題目列表(包括答案和解析)

橢圓中心在原點(diǎn),且經(jīng)過定點(diǎn)(2,-3),其一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,則該橢圓的方程為
x2
16
+
y2
12
=1
x2
16
+
y2
12
=1

查看答案和解析>>

橢圓的中心在原點(diǎn),其左焦點(diǎn)F1與拋物線y2=-4x的焦點(diǎn)重合,過F1的直線l與橢圓交于A,B兩點(diǎn),與拋物線交于C,D兩點(diǎn).當(dāng)直線l與x軸垂直時(shí),
|CD|
|AB|
=2
2

(Ⅰ)求橢圓的方程;
(Ⅱ)求過點(diǎn)O,F(xiàn)1,并且與橢圓的左準(zhǔn)線相切的圓的方程;
(Ⅲ)求
F2A
F2B
的最值.

查看答案和解析>>

橢圓中心在原點(diǎn),且經(jīng)過定點(diǎn),其一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則該橢圓的方程為          

 

 

查看答案和解析>>

拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,且拋物線與橢圓的一個(gè)交點(diǎn)為,(1)求拋物線與橢圓的方程,(2)若過點(diǎn)的直線與拋物線交于點(diǎn),求的最小值

 

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.

查看答案和解析>>

一、選擇題(4′×10=40分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空題(4′×4=16分)

11.       12.          13.       14.

三、解答題(共44分)

15.①解:原不等式可化為:  ………………………2′

www.ks5u.com   作根軸圖:

 

 

 

                                                     ………………………4′

   可得原不等式的解集為:  ………………………6′

②解:直線的斜率  ………………………2′

∵直線與該直線垂直

              ………………………4′

的方程為: ………………………5′

為所求………………………6′

16.解:∵  ∴,………………………1′

于是………………………3′

        ………………………4′

     ………………………5′

     

當(dāng)且僅當(dāng):………………………6′

       時(shí),………………………7′

17.解:將代入中變形整理得:

………………………2′

首先………………………3′

設(shè)   

由題意得:

解得:(舍去)………………………5′

由弦長公式得:………………………7′

18.解①設(shè)雙曲線的實(shí)半軸,虛半軸分別為,

由題得:   ∴………………………1′

于是可設(shè)雙曲線方程為:………………………2′

將點(diǎn)代入可得:

∴該雙曲線的方程為:………………………4′

②直線方程可化為:,

則它所過定點(diǎn)代入雙曲線方程:得:

………………………6′

又由

,,…………7′

……………………8′

19.解:①設(shè)中心關(guān)于的對(duì)稱點(diǎn)為

解得:

,又點(diǎn)在左準(zhǔn)線上,

的方程為:……………………4′

②設(shè)、

、、成等差數(shù)列,

,

即:

亦:

  ……………………6′

   ∴

……………………8′

,  ∴

又由代入上式得:

,……………………9′

,

∴橢圓的方程為:

 

 

 


同步練習(xí)冊(cè)答案